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Abstract

In this research a new approach to the control of systems represented by stochastic differential
equations (SDEs) is developed in which stochastic control is viewed as deterministic control with a
particular form of constraint structure. Specifically. the characteristic “non-anticipativity™ properiy of
the control processes is formulated a. an equality constraint on the set of possibly anticipative
processes. The optimal non-anticipative control is then recovered by minimizing. over the class of
possibly anticipating processes, a cost function modified by the inclusion of a Lagrange multiplier term
to enforce the nonanticipativity constraint. This unconstrained minimization is carrted out
“pathwise™ -i.e. separately for each value of the randoni parameter w - and hence reduces 1o a

parametrized {family of deterministic optimal control problems.

Solutions of the coutrolled SDEs with anticipative controls are defined by a deconiposition
method. It is shown that the value function of the control problem is the unique global solution of a
robust equation (random partial differential equation) associated to a linear backward Haniilton-
Jacobi-Bellman stochastic partial differential equation (HIB SPDE). This appears as limiting SPDFE for
a sequence of random HIB PDES when linear interpolation approximation of the Wiener process is
usecl. Our approach extends the Wong-Zakai type results [20] fromm SDE to the stochastic dynaraie
programming equation by showing how this arises as average of the limit of a sequence of deterministic
dynamic programming equations. The stochastic characteristic method of Kunita [{3] ix used 10
represent  the value [unction. By +choosing the Lagrange multiplier equal to its nouanticipative
constraint value the usual stochastic {uunanticipative) optimal control and optimal cost are recovered.
The anticipative optimal control problem is formulated and solved by almost sure deterininistic
optimal control. We obtain a PDE for the “cost of perfect information™: the difference between the
cost function of the nonanticipative control problem and the cost of the anticipative problem which
satisfies a nonlinear backward HJB SPDE. Poisson bracket conditions are found ensuring this has a
global solution. The cost of perfect inl.rmation is shown to be zero when a Lagrangian submanifold i
invariant for the stochastic characteristics. LQG and a nonlinear anticipative control problen are

considered as examples in this framework .
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0 : Introduction and presentation of the report

At first sight it appears that stochastic control is simply a generalization of deterministic control. One
sees this for example in the familiar LQG problem: given the solution to the stochastic linear regulator
problein (with white noise perturbations) one obtains the solution for the deterministic case simply by
setting the noise mean and covariance to zero. This is, however, a misleading examiple and, in general.
deterministic optimal control is far from being a trivial by-product of stochastic control. which is in
fact in some respects substantially simpler. Indeed. much of it concerns the “‘uniformly elliptic™ case.
where the *“smoothing™ properties of Brownian motion make dynamic programming in its simplest
form a viable technique and obviate the need for special methods to handle non-differentiabitity. fn this
research an alternative approach is developed. in which stochastic control is viewed as deterministic
control with a particular forin of constraint structure, Thus the distinction between “deterministic”
and “stochastic™ is in principle eradicated. (In practice. of course. it is not, since the forin of the
constraints leads to idiosyneratic solution techniques.) The first to espouse this point of view were
Rockafellar and Wets [16].  and & succession of papers followed in the stocliastic programming
literature. ducluding some vers  general formulations in continuous tiime. The term stochastn
programmung denotes a problem in which the cost or reward is given as some explicit function of a
decision process and some random parameters. Until recently little had been done in this vein in
stochastic control. i.e. problem: where the cost is determined implicitly through the evolution of sone
dynamical systent. mainly because of apparent difficuides in formulating the problem correctly. Thes
difficulties have now been overcoine, and the Rockafellar/Wets approach has been exvlored with some

thorougliness.

Stochastic optimization problems typically take the form

min EJ(d.w)
dedD
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where &« € €. the set of random events, D is some class of functions d:Q—F (F is some space of
decisions) and F denotes expectation with respect to a probability Pon Q. Note that this problem is
truly “stochastic™ only when . isincompletely known. If the controller knows . in advance then

(ignoring technicalities) D is the set of all functions d:Q—F and we have
min EJ(d,w)=F min J(f.«).
% (d\w) 7% (f.w)

Thus minimization can be carried out separately for each w and the only role ofthe probability P is to
average the result. In dynamic optiniization F is typically a class of functions such asL_[7:U]. U
being the “action space™ and T a time set. so that the controls are stochastic processes n(f. o). The
most basic requirenment is that these processes respect the flow of information. i.e. depend at cach tine
only on what has been observed up to that time. In fact, this is a ineer equalily constramt. 1o <ee this
in the simplest setting. suppore Q= {w;. 4, ...3...;4}.(' =R T ={0.1}. A control ulf.wr i~ then

equivalent to an 8-vector ¢ = (rl ...... r. ) where

&
I

uU{...,-). r=1...1

5
|

= ) = ...
ul(*,_“). ) [
and the cost can be expressed as

]:,-.l(u.)(.."»).ul(..'l-)...;,-) =:g(x)

FJu.w)=
i=1

I

where p, = I’({..:i)). Let A= {..;l...,'.,l and suppose that at time 0 we have no observations while at
time | we discover whether 4 or A" s> occurred. The decision rule must then be a constant at time 0
and constant on A and 47 at time 1. But this means that r must satisfy the equality constraint

Hir =0, where

-




- -
1 -1 0 0 0 0 0 0
1 0 -1 0 0 0 0 (
H = I 0 0 -1 0 0 0 0
0 0 0 0 ] -1 0 0
0 0 0 0 0 0 1 -1

Or. put another way. + must lie in a certain 3-dimensional subspace § of R®. There i~ therefore a

Lagrange multiplier. i.e. a 5-vector A€ § L such that the optimal decision is a global mininnm of

glx)+ AVHr. The multiplier A ix the price for information in that it gives the incremental decrease in

cost that is available ifthe information constraint is waived.

In this research these ideas are extended to continuous-time dynamical systems. i.c. to the problem of

minitnizing

where the process oy satisfies the controlled stochastic differential equation

dry= flapu)dt+ giedduy.

Here wyis a Browaian motion and wy is the inon-anticipative) control process.

In the mid 60°s Wong and Zakai [20] addressed the problems of approximating stochastic inteprais by
ordinary ones and approximating the solutions of stochastic differential equations (8D by the
solutions of sequences ol ordinary differential equations using piecewise linear approximations of the
Wiener process.  Susstiann [18] continued in the 70°s by studying when can the solution of a SDF be

(% noises the solution of a ! noise-driven ordinan

defined by “extending by continuity ‘o
differential equation. Using these ideas. Davis (5] reduced the LQG problem for the lincar controlled
diffusions driven by Wiener processes to a family of deterministic linear quadratic optimal control
problems (parametrized by the paths of the driving Wiener process) with nonanticipativity equality
constraint on the set of admissible possibly anticipative controls. First. a pathwise optimal cost i

deterministically evaluated for each of the problems of the family by first considering driving stochastic

. . . . {0
processes with (') paths and then using the werk of Sussiann (18] to extend the cost 1o ( W pathis by
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continnity . Finally, averaging over the sample space yields the usual LQG optimal cost.

The report will approach in this perspertive the relation between nonlinear deterministic and stochastic

control problems by reducing the nonlinear stochastic optimal control problems to a family of

determninistic optimal control problems with a cost containing a nonanticipativity constraint. Consider

the nonlinear (nonanticipative) stochastic optimal control problem

dx, = f(xt. u,) dv + gix,) dw, (0.1
Xy = x(0)

i E [6(x(T))] := mt F W 0.2

“ng N [B(x(T))] uf Jluw) (0.2

where N is the class of nonanticipative (adapted) controls with values in a compact et U R (N
will be defined in detail in the next section). If we can define J(u.w) for non-adapted (anticipinive)
controls u € A with values in the compact set U C R (see next section for the complete definition ol

Aj then

“illefjl-, Jtuw) = £ “’i"né " in_ow(-.w)) (0.3
provided we make some assumptions ensuring that the infimum on the right is attained lor cach « aud
the funetion assigning 10 each « the corresponding minimizing control function is measurable. A6 i~ the
class of measurable U-valued (deterministic) controls.  This requires of course a definirion for the
solution of an anticipative SDFE (with anticipative drift) which will be done in Section 1 using the
decomposition of solutions of SDE’s {(sec kunita [14, p. 268] and Ocone and Pardoux [15]). (0.3) can
be used to solve problem (0.2) by solving a family of deterministic optimal control problems indexed
by w € for a wider class of controls u € A. This can be done by adding to the cost a Lagrange
multiplier corresponding to the nonanticipativity constraint as a linear functional of the controls and

by solving

et
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i.ng " [Jluw(w)) + <TA(w). u)>]

t
-

for each € Q and then averaging over Q. To recover (0.2) we would like the above minimum 1o be
attained at the same u(.. w) at which (0.2) is minimized. Assuming (0.2) has an optimal feedback

solution u(t. x; ). we will cousider the nonanticipativity constraint as an integral cost term
!

J/\'](t, Nype w) u(1) dt

U . .
and we will define AT(t. x. W) (superscript 1 denotes transpose) so that AT(t. X w) s !
T
integrable (i.c. EJ' AT, Ny ) dt < x for any u, € A where Xy is the solution of (0.1)
1]
corresponding to u,) and :

!
i arg inf [j(u_'..\v(.. <))+ J A st w). W) uw.(t)dt] =
i A
- 1]
= arg inf (U, w) = u(r. x(1. @)
gu eEN 3
it FEA{t.x.«) =10
{ii1) MU X, &) s "J'V,l. - adapted (i.e. future adapted : ‘.F;r is the sigma algebra
penerated by the future increments of the driving Wiener process w(r. w) - w(s.
Lht<r<s< )
Conditions (i1) and (iii) imply

1
I J AT x( w) @) u(t, w) dt = 0
0

for nonanticipative controls u(...) € N.

Our approach extends the Wong-Zakai type of results [20] (which show how solutions of stochastic

>
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differential equations arise as limits of solutions of sequences of ordinary differential equations) fromn
SDE to optimal control problems for controlled SDE via the HIB equation of dynamic programuing,
In the case when nonanticipating controls appear in the drift the Wong-Zakai convergence resnlt states
that under smoothness and boundedness assumptions on the coefficients we have ( P]!iﬂ'x denotes
limit in probability)

»1i Ril WY oe— .
I l!lﬂyx Xtw) = x(Lw)

where

dx”l(....') - , dl'“(t,w')

—r = f(x"(tw)u(tw) + gix"(t.w)) — x"(0.w)= xq (0.
with

Mt w) = w(ty ) + LTI ) (Wl o) - W) t € [t st (0.5

o= k2% k=001 [1y2h

def(1.w)

— 9h
dt =2

Wty L) - wltea)) fore € o, e 1]

and

dx(t.w) :T(x(t,_.;).u(l,.u)) dt + gix(t.w)) odw(tw) : x(0w) = X (0.6)

f(xu) = f(xu) - %gxg(x)

where o™ denotes Stratonovich differential and u(tw) € N are the paths of the nonanticipative
control. As it is known (0.6) can be written in ito form as {0.1) by adding a correction term to the
drift. Let us consider the stochastic optimal control problem (0.1),(0.2). The dynamic programming
second order PDE  of stochastic optimal control [8, p.154] gives under suitable assumptions the value

function V(t,x) := intN E[f(x(Tit.x.0))] ( x(T;t.x.w) is the solution of (0.1) at time T started at time
u

t from x):

10
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AV(t. x
—Er)‘——)-i-mm {0\ {(t.x) f(x. u )+-tr( gg Ty=0: V(T x) = 6(x) (0.7)
‘This is shown by using the probabilistic representation formula for the solution of (0.7). Let us consider
now the sequence of pathwise deterministic optimal control problems for (0.4) :

e

gl
mrﬂ[e(x“('r.d)) + J( AN (w)w)) Tult,w)de ] (0.5)
0

where A" is the approximation sequence (corresponding to (0.5) ) of the Lagrange multiplier process
allowing us to solve (11.2) over the enlarged class of possibly anticipating controls by solving the family

of pathwise optimal control problems o r u € M for almost all w € Q

T
“ixéfjﬂ’ Bix(T.w)) + J ALt )u(tw)dt]
0
T
Fhe value function VP(tx.w) i= inl  [0(<(Titx.w)) + [( Arx™ritx)w)) u(r.w)ds ]
ue M 0

of (0.¥1 <atisfies the sequenes of  families of dyramic programming first order PDE~ (parametrized by

«tof deterimimistic optimal control :

0_\_-2 o . (-)\'ll VT ‘ d (l <)
o (t. x.w) + xlrlnenql{ o xow) F(xu) + Atx,w)u} + (t x.w)g(x )———-—— =
VT, xow) = 0(x) {0.49)

The Lagrange multiplier process that will be introduced in the report will give an answer (o the
intrigning question @ How can we arrive at (0.7) from (0.9) namely what is the “bridge™ between the
second order PDE of stochastic dynamic programming and the first order PDI of determiniatic

dynamic programming ? The answer is

’ = P n .
Vit = E T Illlﬂlx Vi{tix.w)

L.




and the bridge itsell which [ills the “gap™(in the terminology of [I18]} between stochastic and
deterministic optimal control is a new Hamilton-Jacobi-Bellman backward Stratonovich

stochastic partial differential equation ' .at will be introduced and studied by us

v . ; AP . v ., .. 26w —
dV(t x.w) + rlllnencu{ M (t. xow) f(x. u) + A{t.xow)u) dt + Ox (t. x.w) g(x) o dw, =10

VT, x.w) = 0(x) {010

having the unique global solution v(l..\'.....')::P-I{im_‘i Vi {tx.w) in a certain space of Hélder

semiiiartingales to be defined precisels in Section 1. Qur deterministic methods will concentrate on vhe

robust PDE associated to (0.10) defined almost surely

GW : JW A& o
— - —_ ) [ . . - = (1
g {(t. ) + lllnne“‘u{ i (t.n )(Hx) () (& 0Nau) + ML ()whul=0 i1y
W (T pw) =008 ()

where it is proved that \\'(l.f;l(x).*\ = Vit.x.w) . We use the alinost sure decomposition of the

stochastic flow of (U.1) [L1] giveu by

X (x) = fl o1 (x)

d&(yv) = gl&(¥)) odw §uy) =y (0.1

dry (x) € - .
o = (F o Teg o my(x). ) < mglx) = x(0) (0.1

This decomposition holds on some Q'CQ with P(Q)=1 for which £(y) is a global flow of

diffeomorphisins as we will see later . The robust PDF, (0.11) is the dynamic programming equation




for the pathwise optimal control problems

l
uiléf./ﬂa 00 Erlyp) + J/\(t.é‘(ql ) ult.w)di]
0
subject to (0.127) as only this involves controls.

We will also consider the anticipative optimal control problem (A=0) which will be ~olved by reduction
to pathwise deterministic control via the stochastic flow decomposition formula. The probleny in this
case is that the random value function of the family is characterized by a nonliner backward SPPDE
which does not always have a global stochastic characteristics solution. We give conditions ensuring
thix by rurning a Lagrangian submanifold (see the stochastic mechanics of Bismut {3}, Arnold {1}) imo
ate invariant  manilold for the stochastic hamiltonian system of characteristic equations. 'L he optimal
control i~ given by a selection lemma and a formula is obtained for the cost of infornation on the

future (i.e. the difference between the nonanticipative and anticipative value functions) :
A(tx) = V(t.x) — E\'O(t.x...;)

where as we will see \'”(t.x._.;) = inf M(/(x('l it.a.w)) satisfies the HJB SPDE
u e A

) )
) P . N T [7A} ) Sodwe q.
dVV(Lx.L) + llxlnen {_(')x (tx.w Mixou) dt + B (t.X.w)g(x)o d“t =0 (0133

VI(Txw) = 6(x)

<o that EVO(t.xw) = ianE[()(x('l':t.x...;)]. The cost of perfect information known in the stochastic
ueg
programming literature as EVPL (expected value of perfect information) [16},[19] ix a measure of the

effect of future randomness on the stochastic optimal control problem.

In order to obtain explicit equations and formulae for the cost functions, optimal controls, Lagrange

ok



multipliers and for the cost of information we will make smoothness and boundedness assuimptions
using a dynamic programniing approach. Most of these assumptions are made to be able 1o prove the
dynamic programming equation for the almost sure optimal control by which the anticipative control
problem is solved.  These assumptions ensure this equation has a solution (the value function) which

can be represented in terms of stochastic flows. The same applies to the cost of perfect information.

Some of these assumptions can be relaxed in particular cases as we will see in sections 2.1 and 3.3 . If

we give up these computational aims we can weaken the assumptions by an approach hased on

applying pathwise the deterministic maximum principle (see Remark 4 after Proposition 2.1 ).

The outline of the report is as follows. In Section 1 we define the solution of a stochastic differential
equation with anticipative controls in the drift by using the decomposition of the flow of a SDL
written as the composition of the storhastic flow of the diffusion part {(which does not involve coutrols)
with the flow of a family of ordinary differential equations  (ODE) parametrized by «. Controls only
appear in this random ODE and they can anticipate as stochastic integrals are not involved.In our
paper [6] we used anticipative stochastic calculus and the result of {12] on the existence and unigueness
of solutions of drift anticipative SDEs in a suitable Sobolev space over the Wiener space. This approach
regquires Wiener smoothness and boundedness assumptions on the controls. We also present in this
Section the stochastic characteristics method which allows the representation of solutions of SIPDEs in
terms of stochastic flows of SDE~. This representation will be very useful in finding Poisson bracket
conditions for the existence of global solutions and for proving the various convergence results for
SPDEs via the existing convergence results for SDEs. In Section 2 we prove the Lagrange multiplier
theoremn giving an explicit formula lor A{t.x.w) in terms of the unique global solution of a linear
backward HJB SPDE showing that the mul.iplier has all the properties required for it 1o act as an
equality constraint for the nonanticipativity constraint for control processes. We consider as an
example the nonanticipative LQG probleni which is solved pathwise by determining first the Lagrange

multiplier process. In Section 3 we solve the anticipative optimal control problem

ol E{o(x(T)]

e

e e -
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and we show that the value function of the pathwise problems by means of which it i~ solved i the
unique global solution of a nonlinear backward Stratonovich SPDE. We impose Poisson bracket
conditions for random conservation laws or for the invariance of the Lagrangian submanifold for the
stochastic characteristic system ol the .onlinear SPDE. Such conditions imply the existence of a global
characteristic solution. A formula is obtained for the cost of perfect information and we prove that this
i~ zero when the Lagrangian submanifold is invariant or there exists a time varying non random
conservation law for the stochastic characteristic system of the HIBSPDE of auticipative optimal
control. We consider as examples the anticipative LQG problem and a scalar nonlinear anticipative
optimal control problem. We show that there exists indeed a random conservation law in the LQG case
and we caleulate the cost of perfect information. The Lagrangian submanifold is iuvariant in the

nonlinear problem case and the cost of perfect information is zero.

Y e
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1 : Anticipative controls, solutions of anticipative SDE and
stochastic characteristics solutions for SPDE

Let T>0 and (Q. <. (‘.71)U <t <T P. Wiy < L < T) denote the canonical d-fold Wiener space. ie. Q
= C'([o, T). Rd). w {w) = w(t) is the coordinate process, (‘.T‘z) is the natural filtration of (w,). P is
Wiener measure, & is the P-completion of ‘.ff)l- and. for each t €[0, T). ¥, is ‘:If completed with all P-
null sets of F. Thus (w,) is a standard d-diniensional Brownian motion. Define Q=[0.1]xQ2. F=B[0.
T] x 7, P = LebxP and let ® be the o-ficld of F,-predictable sets in Q. Fix an integer m and define A
to be the set of functions u : [0, T} x Q—U C R™ which are measurable with respect to the product a-
field B[U. T)xF = F where U i~ compact. Define also N as the set of functions u: [0. 1] x Q —

UCR" which are measurable with respect to P and thus F adapted.  Consider the wonlinear

stochastic system
dx = l'(x(. nde + g(x) odw,. Xy=x € Rd (1.1
f(x.u) = f(x. u) - 3 X} £ g-l(x] : gi.\' =
1=
For a nonanticipative control u, € N the solution of (I.1) is defined via Stratonovich stochastic
integral equation
t t
Xy =X+ J T(xp up)dr + J gix,) odw,
0 0
) For anticipative controls u, € A we in’coduce the following definition assuming for the moment that g
A . .
is 7 and bounded: f is bounded and in (x. u).

ition 1

© L e e
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For uy € A we call a solution of (1.1) the process x, defined almost surely (i.e. for w€ Q' CQ .

P(Q)=1) by

X(x) = § onix) ()
where
d&(y) = g(&(y)) o dwy, §ly) =¥ (1.3)

dn(x)  ,0¢ -
(t“\ = (d_:)l(']l(\)) r(El ° nt(x)~ U'): (1.1

r]“(x) =X

The solntion (1.2) is defined ahnost surely because € (y) is flow of diffeomorphisis a.s. so 1y, is defined
ahnost surely t00.We see that this solution is well defined whether or not u, is adapted because 7, is
not defined by stochastic integrals and £, does not depend on the control. This definition implies that

we also defined. in a particular case, a generalized Stratonovich integral

1

Jg(x,) © dw,
[{]

for x, the solution of (2) to be

{ 1
J B(xr) ¢ dwpi=xg - x)- J f(xpoug)dr

0 0

‘This “*decomposition of the solution™ of (1.1) - approach is used in [15] for defining solutions to SDE
with anticipative drift | but a different generalized Stratonovich integral is cousidered there which
requires additional sioothness assamptions. Using the anticipative 1to formula. (1.2) can e shown 10

be the solution of (1.1) in the sense ;' Dcoue and Pardoux if additional smoothness is imposed on fg




and the anticipative controls have bounded Wiener space derivative [Dgu(t.w)] < M. We pursued this

anticipative stochastic calculus approach in [6]. We assume g is C.é so that the solution of 11,3) exisis
; 1 " . 06\ | .
for E(J = y and £ (v) is a (' flow of ditfeomorphisms a.s. ;thus (-9;-)' (y) is well defined for all (1. y)

a.s. according to Bismut [3. p.50]. Under these assumptions , (1.4) has a global solution (see Ocone

and Pardoux [13]).

We presert next the notion of stochastic characteristics (global) solution (developed in Kunita [12.13])
whiclh will be used throughout for the stuchastic partial differential equations involved in our approach.

Consider the first order Stratonovich nonlinear SPDE for x € Rd, te R+ with initial condition

() = Pt + 32 Gy, 9Y) o dwi
{ dv(t.x) = H"“‘Hx )t +,>2—“1 (-J(l.x. (.)x) o dwl

v(0.x) = f(x) (1)

with F(t.x.p) continuous in (t.x.p) and a (‘m+l‘°‘—funct.ion of (x.p) (i.e. m+I-times coutinvously

differentiable in (x.p) with a-Hélder continuous m-{»lth partial derivatives. o > 0). (iJ.(t.x..p) =l

m+2.a

~. ).

continuous in (t.x.p). continuously differentiable in t and ( — functions of {x.p) for v >3 and

f i~ continuously differentiable. wWla)isa standard d-dimensional Brownian motion as above,

A randons field v(1.x) defined for all 1 € R x € R. will be said global C™ Y — process if for almost all

NS
( .0

« € v(t.-w) s a ~function for all teR, with continuous in (t.x) partial

ﬁk\'(l.x..‘:)
k

ok N 5 \K
setvat e : 3 i. -— (_, ! .i. d - - X 1.; 3 P
derivatives - Jkl < m wher o = (\(,)xl) (axd) J k= k o+ . kA global

(" process is a global (" - sempuartingale if Q—‘—l;—:w—) | k| <m are semimartingales for cacl
o

X € RY.

Definition 2 A random field v(1,x) is a global C"o solution of (1.5) if it is a global

1 — semimartingale and it satisfies for all (t.x) € R, xRd

1 t
') . .
v(t,x)= (x) + IF(T"“ “((’;‘x))lr + i ij(r.x. %(f‘x))odwlr A,
0 =1




po—— v ~
It is proved in [12.13] that the linear SPDE with initial condition 0(-) of class C(1F1 v <1<y
O d oy -
) = Fro12% 1 x )L x i
{ dv(t.x) = F{La)g(Lx) di + j; Gj(tx)55(tx) o dwi
v(0.x) = 6(x) (1.6)
having F continuous in (t,x) and of class ('"H'l‘" and Gj continuous in (t,x}, of class Mtz {m>3)
has a global (unique) 13 golution with 4 < a. Generally (1.5) has only a local solution v(1.x) up
. to a stopping time t <T(x) which requires the definition of local randon: ficlds and local
¢ —semimartingales [12.13). This solution is represented as
v(tx) = vy 0 ol(1) (1.7)
where F(x) = SO (X)) (X = ((x0g(x)) v (x) = b(xB(x)By(x)) are the flows of the
stochasiies characteristies sysian viith general initial condition
. (l .
Ay = = Fpltgpi,)dt + }: G p(tgeig) o dwl (1.5
=1
d .
diy = Fyltziodi + Y G (12 1) 0 dw (1.9
=1
d .
di’| = (F(lﬁb(‘i() - Fp('ﬂ;"‘“) i()d' + Z (Gj(t‘¢tvit) _Gj.p(l‘;:l'\l)\l) o dwy
j=1
\
’ (1.1
vp = a i0=|).bu=c
! Here Fp(t.x.p) denotes the vector of partial derivatives with respect to p. The reason for the solution
(1.7) being only locally defined up to a stopping time t € T(x) is that y (X) is in general only a tocal
-
)
8
l |




flow of diffeomorphisms because of the “coupling™ between (1.8) — (1.9).

We will be interested only in global solutions as these will characterize value functions of various
optimal control problems . That is why we do not present in this introduction the local theory
developed in [12.13].  We will be forced to fine conditions ensuring (1.8) — (1.10) has certain (alinost
surely) invariant submanifolds “decoupling™ from one another the stochastic characteristios and
ensuring the existence of w;}(x) for all t € R, a.s. thus turning (1.7) into a global solution.  From this
point of view the Poisson bracket conditions of §3.1 represent new results for the existence of global
solutions for nonlinear SPDE’s.  Tie cocfficients of our SPDE's will be assumed to have bonnded
derivatives (thus a=1) and all our solutions will be global C‘.Z.B for 3< 1. We will term theny (global;
(~ <olutions omitting 3. Also. we will use backward SPDE’s.  Using Ito’s backward formula [11] and
replacing in (1L.8) — (1.10) the forward Stratonovich integral by the backward Stratonovich iutegral.
the characteristics representation of solution of a backward SPDE is again (1.7} but with hackward

characteristics.

P—__.‘.
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2 : Families of deterministic control problems
and nonanticipativity constraints via Lagrange multipliers

We shall show that the standard (nonanrticipative) stochastic optimal control problem

inf  E[6(x(T 2.1
nf ¢ [B(x(1))] (2.1)

for (1.1) can be solved by allowing a larger class of controls u € A (possibly anticipative), introducing
nonaunticipativity constraints in the cost via Lagrange multipliers and solving instead a family of
deterministic optimal control problems parametrized by the sample functions of the Wiener process and

of 1he Lagrange multipliers. A(t. x. w) with A :{0. T} x RY x Q—R™ .

T
inf [Axq(x. &) + J A (roxeix, W) W) u(r) dr (2.2)
ueM B ! ( ]

with x (x. ), the solution of (1.1) for anticipative controls as defined in Definition 1. x,(x. &) = & ¢
m(x). Asonly ny(x) depends on uy we get the equivalent family of problems for w € Q' with € defined

in Definition ]

i
inf (6 5,,(”)+J;\r T le w)ufr) dr (2.4)
B
dn, ('){l ) - .
T=(Fx") (my) (& 0 my. u). my = x (2.1)

where we dropped x from the notation 5, (x) for simplicity and

AT, w) = AT Ep(D). W) (2.5)
By averaging (2.3) over the sample space for suitably chosen 1! Lagrange muitipliers one would then

like 10 obtain the optimal cost {2.1). We will state and prove in this section a Lagrange multiplier

-

[ __
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theorem showing how to define A(T. 1. w) ro that it will act as a nonanticipativity constrauit in a

~————. e iy o

family of deterministic {anticipative) optimal control problems.

We first make the following asswnptions

(a)

, (b)

(¢)

td)

d(’g(’]) _

f ix bounded in x and u and with continuous and bounded in x and u mixed partial
derivatives up to order 3 (i.e. ("I")): g is bounded and C‘g; #is Cé .
d

3 opy d T - " d
For everyv y € R". z (ge (:\))i‘i ¥i¥ > 0 for all x € R".

The (nonanticipative) stochastic optimal control problem

dx, = M{xgou) dt 4 gixg )y dw
inf  E[0(x(T))]
Juf ¢ [ )]
has a feedback solution v*(t. x) which is continuous and (_‘l int, (’g in X.

ut(t.x) € int U forall (1.x) € {071] x RY where U is the control value set

assuthed 10 be a compact subset of R™,

I'he matrix with (i.j) eletient given in repeated indices summation convention notation

by

8loor o vyl (m)  0€, %, .
T ( (7); (1)))“ m«; (§4(n). u) has characteristic values

bounded below by some 9>0 for all (t 5. u) € [0, T] x R x U as. where u";l is the

inverse flow of

2€ . . d
A= = (ST ey ) [0 (o). (e &lvym)) -3 Zl 8,8
1=

“~
LI

(2.6

| e

4
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(& (e (m) - 8L (& twym). (L ey (M) ¥t &) Bplm) = (2.7)

Assuinplion  (d) .as will be seen in the next section ensures the strict convexity in n of

G\

HE( i . . . . . - .
an (l",)(??-.\'_) (Mf(&,(n).u) which together with the particular choice of the Lagrange multiplier yvield-

u*(t.x) as the unique minimizer of

: oW, (P& ST
min GG ot o0+ X (Lnu

The characteristic representation is used to write the strict convexity condition in the form appearing

in (d).

Assutnptions {a. b, ¢} imply that the value function of the problem (2.6). V*{t. x). is the b2 (i.e.

1

CHinr, C=in x) anique solution of

(I VT , Lo 9°VE T
AR, A (1L x) fix. L (5 =
TR lllnnen‘ll { o (e x) fix u)} + gtr ( 2 gg')=0
VAT x) = 6(x) (2.7

I'he assumption that { and g must be bounded can be relaxed only as far as allowing then 1o have
“sublinear growth™ [15] ie. Vor >0 30K, 0. [ gix) | € ko (I+ ] x Il'(. This is because of using the

decotnposition x; = & o g and becanse of needing to ensure that 5, (given by (2.4)) does not explude.

Rl —




\
¢

2.1 Main results

Our main Lagrange multiplier theorem is the Jollowing

‘Theorem 2.1

Cansider the following family of determinisiic optimal control problems indexed by w € Q' C ()

P(Q)=1 ( see Definition 1)

d
(0\) () [ ) w) - 5 Y g g(& )l g = xg (2.8)
i=1 'x

()

1
“hg““’[l A g @) u()dt + 00 E(np)]

where £ () is the solution of

A, = gl&) o dw, (2.9)

So=1

Assume (a) - (d) and define

i NOoéypor (r/)
I AN MR S
At g, &) = i (

“l

X

F Ao £, (€0 u™(e. ) (2.10)

where |, _[a ] 1<i<d. 1<j<m.
Then u™(t. &(n)) is optimal for (P*) a.s. and so u*(t. x) is optimal for (2.2) and if we denote by Wi,

1)) the value function of (P¥) we have

W(t.n)=80f, 0 L'}](U)

24
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EW(t. &1(x) = V(1. x)

EAT (1, E;l(x)) =0 (2.11)

and V(1 x) := W(1, 5;1(.\)) is the value function for the problem (1.2)-(1.3)-(2.2).

The basic idea in the proof of this theorem .s to use first the deterministic dynamic progranuning
approach pathwise for (2.3).(2.1) to obtain a random (robust) HIB PDE. The Lagrange multiplier will
be chosen so that the minimizer in the HJB PDE is the same as the nonanticipative (feedback) optimnal
control u*(t.E[(r))) assumied 1o take values in the interior of W. For this we need the strict canvesity in
u of the expression to he minimized in HIB PDE and A to be such that the derivative in u of this
expression vanishes at u*(t.fl(n)) (interior minimum ).’ The characteristics method will he used to ensure
that there exists a C12 solution of this pathwise HJB PDE so that using the verification theoremn
[R.p.87) u*(t.:’t(n)) will turn out to be optimal for (2.2).To characterize the value function W(t.5)) iu
terms of X as solution of a HIB SPDE we will approximate the Wiener process by linear interpolation
and we will show that HJB SPDLE appears as limit of a sequence of random HJB PDE's Averaging
HIB SPDE we get the second order parabolic PDE of stochastic dynamic programming. This wayv our
proof extends the Wong-Zakai type resnlts [20] from differential equations to optitmal control probleins
(dynamic prograniming equations)(see also the remark after the proof of Theorem 2.1 and [3] where the
extension by continuity  of the cost to Y paths was used). It is for this very important reason that we
will prefer a rather lengthy approximation argument for the proof of Proposition 2.1 heluw. One can
try to obtain the value function in terms of x by proving a generalization of lto extended rile to
calculate the differential of \\'(l.\‘,;l(x)) as the random field W(t.) is non adapted.This will directly
show that the randoin HJB PDIl. is the robust equation associated to HJB SPDE via the
transformation x=§ (1) given by the solution decomposition formula (1.2). We used the anticinative
lto rule of Ocone and Pardoux [15] which requires Wiener derivative growth estimates for the randow
ficld W(t.p). This approach was developed in [6].

We start by proving the following result whicl is essential in the proof of Theorem 2.1
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Proposition 2.1

Assume (a)-(d). The value function of the problems (P“) with A (L. 7 w) defined by (2.10) is the

. ~ 1.2 . N
unique ¢ 12 solution of the random PDE

B aom+ Gl (5 f‘) (1) IF (€y(n), u¥(t. Em)
d
-3 Z & g;(& (m) ( (). u*(t E(m) u™(t E(m))] = {2.12)

W (T.y)=00&n)

where £,(1) is the unigue nonexploding solutien of (2.9). V(t, x) := W(x, E;l (x)) is the unique ?

solution of the backward stochastic partial differential equation (SPDE)

dvVit. \)+d\ {rox) {fix. u™ ) - -())—f(\ u*(t. x)) u*(t. x)
d \
i Z dl -+ O} (. XJ g(x) édwl = 4§
i=1 N
VT, x) = 6(x) (2.13)

or 1 o backward form

dvVit. \)+ {()\ (1. x) [f(x. w* (e x)) - ("(\( u*(t. x)) u*(t, x) ]

+Llr(( (t. x)gg (\))} il +‘(,—'.)‘\?(t..\')g(x) dwt=0

VT, x) = 0(x) (211

Remarks

1. (2.12) is thus the “robust equation’ associated with the SPDE (2.13) (see Cannarsa and

Vespri [4])

o
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“d" and ** 6 d” denote the differentials corresponding respectively to lto’s and
Stratonovich’s backward integrals (see Kunita [14])

A stochastic Hamilton-Jacobi partial differential equation was considered in Bisimut

[3. p. 323] in the context of randc 1 mechanics

A different approach can be pursued based on pathwise application of the deterniinistic
maxinium principle. The Lagrange multiplier can then be defined in terms of a random
adjoint process. As such an approach will not involve SPDE’s and thus we will not make
use of stochastic characteristies  the smoothuess assumptions can be considerahly

weakened.




2.2 Proof of the main results

Two lemmas are required in order to prove Proposition 2.1 and thus Theorem 2.1.
Lemma 2.1

Consider the sequence of random PDE’s

ayarh m el
B om + By (S0 1 €0, w*e, €20m)

d ,
57 g (& ) - L (el L ) ure, )] = 0
= Iy 71 i

WHT. =00 e!}.(,,) (2.15)
with

9(—,“:2 (n) =g (&' ¢

&t =1y (2.16)

where (1 W) is the piccewise linear approximation (“linear interpolation™) of the d-ditensional
Wiener process w(t, w):

M W) = w(t,) + 2%t - bod (Wl ) - wlg))i b € [y, Y1)
where t, = k/2% k= 0.1 ... [T/2"] 5o that

L w)y =2 (w("k+l)' W(tk)) (2.17)

fort € (1. ) -

Under the assumptions (a, c) the sequences of random PDE’s (2.15) have unique 12 solution for cach

hd )




n € Nand VOt x) := W'(1, (E:‘)'l(x)) satisfies :

()\ (l + , { 1 d 6f( *
T X) ( x) {f (x. u*(t,x)) --Z-Zg- gi(x)—b—a X, u (1,x))

1=1
rn
x u*(t. x)] + Qg\—— g(x) 1{‘ =0 (2.158)

VT, x) = 8(x) .

Proof

For the *piecewise’ linear approximations 1{' considered above we have

un owhte (€8) ! () pwn 1 A x)
Q('\)T (t.x) = 01( ()f\)}\n e (E?) l(x)) —#_

a\\ 5?) ¥

d
(1. (€l (x))( (E e [ v ) -4 3 g gyt

i=1

. ("” x.out(nox)) u¥(e. x)] 0“

NEORE ))((,\)‘ (€1 (x)) glx) &

hecause

(&Y Lx) a
(“ = (f‘)'uf") (x)) glx) i

Using now

gV (
ax

_d \\ M

(€

1. x)

A
(((et (x )) ( 6‘)'1 (&H x)) = I, (due to (a), & (x) is a.s. a flow of

diffeomorphisms and Et ) (5,_ )'l(y)zx )

_—
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1
we get the required sequence of random PDE's for V™{t. x). To see that indeed under the assutnptions !
made. WP(t, ) and V7(1, x) exist and are a.s. 12, we consider the corresponding characteristic )
equations (obtained by replacing ftm)( %y (7]) in {(2.7) by E (n) (———)' (n) to get Ll(l/)) and
representations of the solutions for (2.15) and (2.18). Reasoning similarly to [14. Lenuna 6.2(4) ] for
the integral form of random ordinary differential equations we write forward equations for the inverse
L3
of the flow of characteristics for each fixed t € [0. T]):
whrlon = @ipytm s e o )y = p
wlere
d(v. r)
(()‘ SEFE R o) el ). vts. €8 (i) Ym))
Z B &€ o - Gl e o). utis, €8 (e )
x u* s, €30 ) = s (N ). w (2.19)
Pyt =g oigs<n
and respectively
() =@ e s ¢ o (w2 x
wlhere
“ls) l( X) - -n 'l 1 d D y-1
—a = ¢ . o (e - 4 21 g &((CL) " (x))
=
AL . s (L)) vt (G + g ) ¢f
" By Wots 1 X s (Ggs) T (x)) + 8U{Ggs) "(x)) Tg
(¢l =x:t<s<T (2.20)
L]
For each t. n. for almost all w € Q (2.15) and (2.20) have unique non-exploding solutions on [t. T]
under (a. ¢). It is elear that for bounded f which is C% in (x. u) and bounded g which is (‘%. (2.20) has
for every n € N. for almost all w € Q and x € RY a unique solution on [t. T} [3. p. 38). To see that
i

10
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(2.19) has a non-exploding solution on [t, T] we have to show that a™(s, x, w) satisfies a linear growth

condition for each n a.s. We know from [3. p.39} and [15, p. 57] that for every t.T. J > 0
s 1 n 9
( )(x)l<€(-)(l+IXI) €[t T) (2.21)

for some family of random variables {C' (s)} n € N which is uniformly bounded in Ly forallp>1ie

sup E| &) P« x (2.22)
neN
and such that for every .3>0 and a > 0 there exist constants C,,. 3 for which
C
P> 0 < —;;J (2.23)

(',C
for any (>0. In fact in {15] it is shown that (—(.;—\j")l(x) satisfies (2.21) using E su<p ’]ll NEYRLEES Cptl
’ s

‘ 2 : . . v .
+ix i'))p/' for p > 2 and Sobolev's inequality. Using the fact that

lxy-x = Iy (so &) where E [<||<|>'l>} INER | ] < x

from Ikeda and Watanabe [10. p. 506] one shows that also E sup | £5(x) |9
s<T

< (':;( I+ | x]9) q/_ for q > 2. Here ¢ cg are constants for each fixed q > 2. n €N.
Pue to the assumptions we made and due 1o (2.21) in which we take g = '5

. d
Mo x ) o= | RENNL 0P 600 - § ) g gi(€5(x))
i=1

(,u L (€h(x). u*(s. £0(x))) u(s, £%(x)) | < M (2.24)

and

((55)1( ) || ln(‘i x.w)l < c"(..z)(l +|x])as. (2.25)

TP .
la(s. x. w) | < T

o e




for a uniformly Lp bounded family of random variables {7"(w)} n €N for any p> 1. The a.s. linear

growth of a"(s, x, w) (2.25) ensures that the solution of (2.19) does not explode.

Thus we have the representation of the solution of (2.15) and (2.18) :

Wity =60 .f!i‘ o (c'{l)'l(r)) =0o 5}, o (u-:‘T RO (2.26)
VE (4 x) =80 (o)t (x) (2.27)

The uniqueness of the Q solution for a.a.w. of (2.15) follows from the uniqueness of the solution
provided by the characteristics inethod and the uniqueness of the solutions of (2.19) and (2.20).

Lemma 2.2

Under the assumptions (a, ¢) for the linear interpolation approximation v™(t. w) as in the statement of

Lemma 2.1 we have for each t € ‘0. T}

\'“(l.x)EV(l.x) (208
wh L Ewal g (2.99)
W gt oo £ wo gl (230

unifornmily in x on compact subsets of RY.Here V(t. x). W(t. n) are the unique 2 and respectively ¢l

: . . . P.. . .
solutions of (2.1) and respectively (2.12). =" denotes here convergence in probability as n—x.

Proof

For f and g satisfying (a. <) we get for each t < T
oo £ gl (2:31)

where (;l(x) satisfies

-
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» z
r !
1 1 | d 1 |
ds Gel®) = [Getx) u® (. e - § 3 & £(G5(x)
i=1
- ZL (A, s, A u¥(s. (L ds + g(Ghx)) 0 dwg (2.32
L]
Gl =xtgs<T
This follows by applying the convergence result for the inverse of flows of SDE's with bounded
' coefficients [3, p.66 and p.39].
To prove (2.28) we use now the representation (2.27) of the solution of (2.18) given by the
characteristics method. Assumptions (a. c) ensure the existence and uniqueness of V(1. x) for each n
€ N and due to (2.31) and (2.27) we have for each t € [0, T]
b
vVt x) '—ooq,‘r(x) (2.33)
uniformiy in x on compact subsets of R But under the assumptions made we know from Kunita {12,
Section V1] that the unique 2 solution of (1) s V(t, x) = 9 o (Il (x) =40 o(;-lr(x) where ¢, (X)
satisfies
d of
d Cix) =[G (x) u® (L ¢(x)) - 4 Z S;xsi(Ct(X)) - 3y (Salx),
i=1
{ u* (L Cx))) ut (L G (x))) d 4+ gl (x)) 6 dw, 230
t
!
\
y Crix) = x.
' )
and C;I(x) is the unique solution of (2.32) for s = T (Kunita [14]) so that (2.28) follows. The flow of
(2.34) was denoted ¢ (x) as it has terminal condition at T.To prove (2.29). (2.30) we use the
representation (2.26) given again by the characteristics method for PDE. We will prove first that for
bl
A i




each v € [0, T)

()l B u;%w)

uniformly in n on compact subsets of RY. (2.35) will then be used in proving that the following

convergences are valid uniformly on compact sets of Rd. for each t € [0, T):

WP (@) = 80 g o (el o (el oo B wie gghoa) = 0 g0 ik o gihix)

and
W (L, ny=~606o f'i o (U{l'rfl (nj L Wit,n)=0»o ET o U’;rll\(n)
where
d Elix) = - grgghin)) o dw!
Eh},nx) =x:0<~<1
\\l = \\'l - “’f—.\
&% = g (x)
deh ) x) Nl del
—as— = 8 &y T (x) =
({'l;")"(x) =x:0<s<t
SUER
€t x) = (€ )
and

im0 N
— = (7,%)‘ widim) 1Rz bom. s, &uidimm

(2.36)

(2.367)

(2.38)

{




d
-5 D 8 &ilswinm - ZLednigin. s, &uidm)) (2.30)
i=1
x u*(s. ELEaM)] = als, ¢ (). )
u'}}(r)) =n:t<s<T

In what follows t is a fixed value of {. T]. The systems of random differential equations (2.19) and

(2.39) have unique nonexplading solutions (t.'"t )'l. u’-']

st 25 due to the a.s. linear growth condition for

.1:5 (2.21) and to the as. locally Lipscuitz property of a™(s. x, w). a (s, X, w). The latter follows fron

{a. ¢) which imply that

are CLas [3.p50). Take now K a eompact in RY and define for R>0

rh' =inf{s € {t. T] | sup | Lll M1 2 R1} AT
: nekR
r}'}‘“ =inf {s € [t. T] [ sup | (L-:L)'] (M| >R}AT
nek '

Now for 0 <~ < fll(‘ A r‘é‘" we have
S
Adn )= LAt - gl < fl (e (T (), w) - a (rel ) o). @) |

t

5
dr s JI ar. ()T () we- a (rovs (), @) [ dr
t

< sup | a(r, (e (m), w) - a (1, (rl{',)'1 (n), w) | dr

—

-



~ 1]
; +J sup 122 (7 gt () e O+ (- o) (it O ) f
‘ P! <r<rll‘{/\rlf‘(” ’

neEK

x f(ctr)l(u)-u‘ (mldr< Tsup | a™r, x, w) - a (7. %, w) |

t<r<T
Ix] <R
> .
+‘{ sup ]g—"‘l(r. Vowl |- Ap(n. w)dr
t <7<T 9X
" <R

where p'i(w) € [0, 1] as. for every n € Nare given by the mean value theorem applied a.s. fur cach

n. Using the estimates of Ocone and Pardoux (15, p.57] we get the following estimate

da . ¢ dET] ()Erl

sup |5 (rov. )| € sup = I F su (x}1
lS"l'S'l' ax 0<r<T (3\( ) P+ st (()x)
vl < 2R v, < 2R v} < 2R

* s
x b+ By wiisup  1{5E) 001 € ML) (4 4RY) + (L) (14 124

<<l 7

Iy} < 2R

= ((w) (1 + 4R%)?

<]
where L(w). {(4) are l.P bounded r.v.'s . \We use again the notation a(r, X, w} = (-;—E)’l(x) I(&p(x).

u*(r. &~ (x)). Due 1o (a. ¢). Fis bounded and so is I'y + Fy uy where Fy. F, denote Jacobians with

. respect to the first and rospecti\«-i;\ second variable. M denoting their common bound. uy i~ the
b Jacobiau of u*(t.x) with respect to the second variable. Applying now Gronwall's inequality a.s. we
]
'* obtain
!
\
{ 2.9
Agln w) < exp (Ew) (1 + 4R7)°T). Tsup  |a(r.x, w)-a(r, x.w)| ¥
, 0<T<T
[x]<R '
ssTRATk"

——————_
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We show next that
al (T, X. w) 2 a(r.x, )

uniformly in (r. x) on compact subsets of [0. T] x R, We have by the mean value theorem for I

Ox

) 0
4 ) - atrox ot | < (S0 o - (G2 Y 1P 1+ 1 (G20

(o]
x| Fy + Fau} |1 €8x) - &,(x) | < (E’)I( ) (GEE) 00 1 M+ M L)

su
0<
| x

V\*'c

T
| <2R

x(1+R?%) sup | €EMx)- Exx) |

su
0<r<T
x| <?2R

I\—

I<

Using now the uniform convergences in probability on compacts

P( sup [a™r. x. w)-alm. x. w) [ < 8) > P((L(w) < L, )
N<r<1
x| <2R
6 7} 1
& ( sup Ex) - Ep(x) | < ——E——-) & (sup (=T (x)
Ugrg'rl T IML (14R%) 0<r<T (‘9")
x| <2R x| <2R

I‘r%

. )
.(’,ﬁ)l(x)|<ﬁ) > 1.1(‘—- +1-f£41-f-2=1-cforl =

This imnplies that for a fixed compact K C R v. R>0. (>0, 6>0 3. NP&K such that ¥V n> N(RJ,

P (A w) < bfort<s< f'l“ A rll"“" andn € K) > P((&(w) < L))

d




e i .

e

..

&
0
I

sup

<7
X |

l/\

Tla“(r X, w)-a(r, x, w)|< & (Texp (L,(1 +4R ) T))’]) > 1~
R

S 1=1-4% for L', —6

6

3

so that using the same urgument as in Shreve and Karatzas [11, p. 298]

}’(rR < rl‘ My > p (sugl\l(t ) (71);<6+supK|u";; () | for

t<

s<rT

nE

KAl >3

Finally. because

lim

— X

and so

lim

{le. V. >0 3

any compact K C RY V. . 8503 N,

P

> P((As(q..d)<bforl§s_<_rl§ A ra" ne}\’)&(rlﬁ'zT)&(r{‘i < TR

sup
t<s
ne

P (sup | c'}l(r}) [<RIVv.~€e [t.T))=1
K s

ne

P (Tlﬁ. =T)=1

K.pR ‘
\ = ‘\:(\SU(h that V.n > N}\

Ay w) < 8) 2 PAJ (. w) < bfort <s<T,n€ K)
<T
K

+
&3l
+
Wi~
~
0

¢
LI

+ 1

K.n)

. Rf{ such that V. R > HK p ('K, =T) > 1- -§- ) we obtain for any t € [0. T] and for

)

and thus we managed to prove in particular for s = T (2.35). We can now prove (2.36") .

l‘Ofl(s(TR A ™R'

K.

we have

K}

S —




’ ; f’r°f'§.l (M) < M| &o(w

By(n. w): = |60 o (vf) () -0ogpo vl ] <

epovid ] < Mo (el (- gpo (vl

x (Bt + -l el o e T m - el o) <

& () ]+ ML (w) (1 + AR?) sup
|<\

I,G"\

K.

P(B (. w) < éfort<s< r}% r TR

< 3(;—]) L (L{(w) < L) & (sup <r HL"{L)
= t <s <’ ’
neR

2 L L .
> -4 1-p+1

Hlence we obtain

P( sup
t<s<T
n €K

Bs(n. w) < 8) 2 P(iBg (1.

A Y ad

and (1’% =T) and (rR < rlﬁ M

deriving with Gronwall’s Lemma the estimate

. -———— - -

-
o
[ 4

-
a
—

For a compact K cRY V. a5 3, Rl\ and I,

N2 1-E4-

Lo 1€} o el
o) +1epe )

L ) - epo (Wl () 1+ M| a L0

Msup | & (x)
x| <R

| By (m) - wil ()

6(
and (6

-n€K) 2 P(( sup

= K . :
l\ Re 5\6 such that V. n > \']\.» :

=N

1€} (x) - Ep(x) |

|x] < RE

(n) - w (mi<

w) < & L<s<rR' A TR

6 6

é

— )
2ML(1+4R?)

K. n, 7 € K)and

£4+1-£-2=1-¢

(2.36") is thus proved. Similarly one proves (2.36) by applying twice the mean value theorem. by

p S SIS




e g e ——
L.;__ - - -
T

P~ - - -~
! T
ot - 59~
swp_ |52t (1) | < exp(T(w) (14 4R%? T
t<s<T 1
2l <2R

with  (w) an LP bounded r.v. as before and by using the convergence result for each 1 <1 :
>
@t Bt
unifornily in x on compact sets of rd (3. p. 66]).

Proof of Proposition 2.1

Consider (2.12) and assume (d) and u*(1, x) € int U for all {t, x) € [0. T] x R" as in {¢). Then

because

Wit. ) =8 oo ‘-';I (n)

ol (Lt 1. v W) |

du Uas.

W E )

and because H(t. n, .. w) is strictly convex on the compact AU for all (t, n) a.s. where

- D€ d , .
(L u W) = %‘,l)mn(i,—,;)' () {f(€(m. u) - 4 .-Zn g S(€ () - A gy wtie & )

we have

?fieucu H(t, 9 u, w) = H (1, 0wt e €(n). w) as.

so that with A (1, 5, w) defined by (2.10). W1, m=0cfpo :./rzl (n)isa C? solution of the Hamilton-

Jacobi-Bellian equation for (P¥) a.s.

b —— e




+ AT (g W u) =0
W(l.g) =80 &yl

As solution of (2.40) W{t. ) salisfies the optimality principle inequality

t
B . . ')é_
Wig 0 € - [ B 0 (G2 ) & 6 ). 0" (7l u () dr
L
0

+ Wt n)as.

(2.1

for any u(t) € A where »y is the solution of (2.4) starting at ty from x. We also have under our

assumptions (a. ¢) that the solution o (2.1) for u = u™(t. §(7n)) denoted 1;:‘ . eXists, s unique. non-

exploding and

= ; + =
dt ot oy

dyy
ar

)

)\\ »* ()E * ")f - * *
=%;<c-rz.)(3§)‘(//,) B (& (D) 0™ (L &OITN) 0 u™ (L €y (nf)) as.

Theu by the Verification theorein (see Fleming and Rishel (8. p. 87]) u*(t. §,(m) ix optimal for (P*)

for almost all w € €2 and W(t. n) is the value function of these control problemis paratetrized by « € £2.

It remains to prove that V(i x) == W (1. £}l(x)) satisfies (2.13). Using now Lemmas 2.1 and 2.2 we

have for each t € [0, T)
wie Moy Ew o, g1

TS x) = W"((. (f{l).l (x) _}: 00(;] (x} = 00(1}]. (x})

¥

Y S



-y

. . . . 2 .
uniformly in x on compacts of RY As (2.13) has a unique non exploding C* solution {because of
Kunita's existence and uniqueness theorem for SPDE's from Kunita [12, Section V1] whose conditions

arc met here (see (a.c)). we must have

VL x) = WL g ) =80 Gh (0

because of the uniqueness of the limit in probability so that W (t, 6;1 {x)) is the unique C2 solution of

{2.13) and Proposition 2.1 is proved.

We can now pass to the proof of our Lagrange multiplier theorem for anticipative control.

Proof of Theorem 2.1

As we saw in Proposition 2.1 with the Lagrange multiplier process AT(t, 5. w) defined by (2.10). the
optimal control for the stochastic nonauticipative control problem (2.6). u*(t, & (n) is optimal for the

anticipative optimal control problems (P*) for almost all w € Q.

Due 10 our assumptions ;\T(l. E;](x)) defined according to (2.10) by

av (L x) [

5% (X u™(t x))

XI(I. f;l(.\’)) =AM (X W) = -
is LU gd 1 ox duy - integrable for x = x, the solution of (0.1) corresponding to some uy € A
i T
E J | AT(t, xgw)|dt < E J | Vg (toxy) |y (xg. u*(t, x) [ dt < oo
0 0
‘I'his is proved in the following way. First because f ;. 6 are bounded; V(t, x) = Gx(C;l(x))

a0
ax

and x,=§ o, we sce that via the estimates for flows of {15] and [3, p.39.50] :

|

e 16,00 < k(w)(i + Ix]?)

— ————
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Vx € R4 L k(w)d(w) € g li\_p(Q) we have that the L! integrability of the Lagrange multiplier comes
p2>

down to showing
T
f’
EJk(u)[l + ()1 + |17L|2))"]dt <o
0
and thus reduces to proving
o
sup_ Eln~ < x Vr>|
t<7T

Ihix follows as usually from the existence theorem for (1.4). Consider the successive approximation

sequence

€. = -
r)?:xo . r;{‘:xu + J(%)'l(n"fl)f(fro 712 l,ur)dr

0

We assumed before without restricting generality deterministic initial conditions, so that
aef "
sup |‘,'I[?|" = xgl” < x .
t<7T
By induction if

9l
sup E|7)‘"'l|3 <x Vr>l|
t<T

then using again the flow growth estimates in the successive approximation sequence defined above we

have

P drdaia.
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t
E]r) ]- <Ar+Br+BrJ 1:,,,1[- dr < < (2.11)
0

where

oI or -)l'+l 1
Ar = el By = (T (EQ)? P

with ¢, depending on r only and M the bound for T. Due to the growth estimates and the a.s. smooth
flow of diffeomorphism property of £ (x) the coefficients of (1.4) have linear growth a.s. and are locally
Lipschitz a.s. so that the existence theorem for ordinary differential equations can be applied alniost
surely to (1.4) : the successive approximation sequence convergences a.s. to the unique noun-exploding
solution of (1.4) which has thus finite moments due to (2.41) and moreover by Grouwall lemma

applied to
L
9f b
Eip ™ < A+ B+ BrJ'Elurl' dr
0
we have the following estimate
ot
Einl® < (A;+ Bpexp( B,T; Vte[0.TL.vr>1

We show next (2.11) . W (1, E;l(x)) satisfies (2.14) and because of u* being an interior optimum (see

gv* of

(¢)) for (2.6) (and thus o (t. x) o Len. w1, x)) = 0) (2.77) can be written

"‘ (t.x) + & (z X [f(x. u*(t. x)) - (x (L)) vt X)) + e (‘9 gg’(x)) = 0

VHT. x) = 6(x) (2.42)

We average the integral form of {2.14) and we use Lemma 6.2.6 and Theorem 6.1.10 from [12] in our
particular case to interchange cxpectation with differentiation and integration and to show that the

stochastic integral has zero mean. W. get under our asumptions

dd

4

e




e
T
“w- N ) g ’ . . o *
EV (1, x) =0 (x) + B (EV(r. x)) [ (x, u™(r. x)) - Ju (x, u™(7, x))
t
T 2
x u* (r.x)] dr + '{ %tr ((—7-—1—% gel (x)) dr (2.427)
ox<

t

where we denote again V(t, x) := W(1, E;l {x)). By the uniqueness of the solution of (2.11) (se¢

[9.p.44])

VA(tx) = EV(t.x) = EW(LE (x) (2.13)

and thus

Eafsy=EX (Lt =k (-

aW(L. &1(x)) .
AMUTNLY)) %(x, u*(t, x)))

ax

ot

_ e oVE
il Ul

= I (x. u*(l.x))):U

t, x)

We have proved (2.11) and the proof of Theorem 2.1 is accomplished.

Remark

Using the convexity assumption (1) the HIBSPDE (2.14) can be written

. . , dl
dV(t. x) + rllluencu { Vlfix. u) - ((I—u- {x. w*{t. x)) u} + % tr (Vyy 887(x))} dt

+ Vy (L x) g(x) dw, =0
V(T. x) = 8(x)

a\

where V. := }7’-‘- . V(t. x) is the "imit of the sequence of value functions for the sequence of

P——- —— v*—-—--—_

4

e
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{deterministic) control problems indexed by n € N and parametrized by w € Q'

£ =Tixfh uy) + g(x!) ¢, w)

Pw',n)
{ T
uhg./n, [0(&'}) + I(X"(t, x{' w) ) Tu(t)dt]
0
where
R x )T = - VE (1) & (x 0¥ x))

with V(1. x) being the solution of the sequence of random HIB PDE’s (2.18). Using (2.43) we have

the fundamental result
.‘ . - _ - ,l' R - . .
Viix)= E pl{l_l_l.lx\' (tx) = EN(tx)

showing how the second order parabolic PDE of stochastic dynamic programming results by taking the
it in probability of the sequence of deterministic dynamic programming equations (2.1%8) (which
vields the HJB SPDE  (2.14)) and averaging. This is the quintessence of the relation between
deterministic and stochastic optimal control generalizing to dynamic programming equations the
Wong-Zakai type results [20].[15] proving how solutions of SDE’s appear as limits of sequences of
solutions of ordinary differential equaticus . Borrowing the title of Sussmann [18] ,we can say that the
“gap between deterministic and stochastic™ optimal control is filled by objects like HIB SPDI (2.11) .
The price to pay for this result was the lengthy convergence argument in the proof of Proposition 2.1 .
Moreover if [g,(x). gj(x)] = 0for i <i,j <d where

Og.(x) ag:(x)
(g;(x). gj(x)] = '—é;'x—' g;(x) - —(;—‘_ g;(x)

(i.e. g; commute) the value function of the pathwise optimal control problems (2.2), V(t. x)=0o (;’]l'(x)

is continous with respect to the Wiener process {due to the characteristics representation this follows

-y -



from the continuity w.r.t. w(t,w) of the solution of SDE’s proved in [18]) being actually the “extension {
]
. t
by continuity™ to cP paths (see Davis []) of the value function V(t, x) of the problein ‘
%y o= T(xgu) + glx)) &t w)
(P¥)
T
inf_ [0(xp +J;\""!.x...: u(t)de .
UE./ﬂa[([) {(t. X[+ «) u(t)dt]
0
where (1. w) are C! noises a.s. and
!
i . Y oG Of e
Ax. W) = - Vi (tox) (()—u- {x. 0 (1. x))
Here V' (1. x) is regarded for each « € 2 as a map defined on the function space ¢! ([o. 1. Rd) (i.e. V
is mapping the path space).
0
;
3
-
* 47
| ! |
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23 General Lagrange multiplier formula for the problems :
with integral cost

If we consider optimal control problems with integral cost, Theorein 2.1 can be gencralized as follows :

‘Theorem 2.2 '

Consider the following family of optimal control problems w € Q'

O,

e ‘
i = (G () 1€ ) u) - & l; & &€y (m))]

(P*) y = Xy

| T
uilérJﬂ, {6 ofplny) + {[L (t. & on.u)dt + l/\1 (t. gy ) ug dt]

Assume (a) - (¢) and

(') L{t. x. u) is continons in 1. €7 and 3 in (x. u). convex in u for al! t. x and
l‘

T

{ diu [bogpov;iin+ J (L7 &ovpou! (n) u*(r. Er 0wy 04! (m)
t

L,

(T &rotyo ;-;l(rl). u(r S, 000 L,.;l (M) u™(r. &, 0 4p 0 u'{l (n)) drl)
D€
x () 0 fuu & () w)
has characteristic values bounded below by 7> for all (t. 7, u) € [0.T] R x Uas.

Define

T
AT (4 w) o= - { 3% (fobyo u-,‘v'(n) + I (L(r.&o0v,0 w;‘ (n). U'(f.ffw'.,cw;](n))) '

aL

t
- GEr Erov o vt utir €0 vy o vy M*(r6r 0 ¥p 043! () dr])




—

i
!
i
|

e .
x (k) Lo £ (€um) wtn g - Bk (L (mut e, gm) (2.44)
Then u*(t. &,(n)) is optimal for (P~) a.s. and

E Wit £1(x) = V*(t.x)

E M ghx). w) = 0
where W(t. ) is the value function of (P~) as.

Proof

The proof is identical to that of 'Theotemn 2.1 except that this time the integral cost term changes the

characteristics method representation for W(t. n) as follows :
Wit. ) == OL'-'(I)_ oL'J-(r)
)= " t 1) = 71 1 I )

where L'-l~(r } is given as before by (2.39) and
1 ] ! 4

dy ()

o = Leg o v (Mt (g o v ) + % (L & o vy(mut (L& ov (M)

X u'(t.fiot"(n))

() = 60 &p(n)

d

e s
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2.4 Example : nonanticipative LQG Problem solved pathwise

Consider the standard nonanticipative LQG problem

dx, = (Ax, + Bu)) di + C dw,
(P) Xg = ')TO (2.45)
T
ian E[J (x{ Q x; + uf Ruy) dt + xJ Fxy]

u€

instead of solving this stochastic optimal control problem let us consider the family of deterministic

problems
dn, ,
T A(y + Cwy) + By,
ny =%y (2.16)
(P¥)
1
it [ Ho o+ €T QUi+ Cw) 4 T Rud d+ G+ Cwp)T E

1
x (pp + (‘wT) + J PUTH e w) oy dt)
0
We need to determine the Lagrange multiplier X (t, 7y, w) such that if u*(t, x) is optimal for (2.45)
then u*(t. n + Cw,) is optimal for (2.46) and we have
Vit x) = EW (1. x - Cw,)

where V*(t. x) is the value function for (2.45) and W (t, 1) is the value function of (2.46). The

decomposition of the solution X, is here




-

A T ol

X, = 1 + Cw,
The desired value of the Lagrange multiplier is (see (2.44) and theorem 2.2) :
A xow) = - %‘\— (t.x) B-2u" (L x) R
where u*(t, x) is the feedback optimal control for the (nonanticipative) LQG problem
u*(t. x) = - R'IBTSLx
S, being the solution of the Riccati matrix equation
S +SA+ATS -SBRIB'S +Q=0.5p=F

V(1. x) is the solution of the HJBSPDE

dv + mienCu {Ve(Ax + Bu) 4+ x'Q x + uRu + AT (t, x, w) u + § tr (V,CCT))
u

x dt 4+ V. dwl =0
V(T, x) = x"Fx
The minimizer T*(1, x. W) is
Tl xow) =- LRV BTVI 4] = RIBTS, x = u*(t, x)

We look for a solution of (2.47) of the form

V(t. x. w) = x"S‘x + ‘.’/_3‘1'(..:! X+ (w)

(217

(2.1K)

|
;~ }
f’ 51 1'
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P s

which we plug into (2.47) and we get

ngt_ x dt + ?d/:?ir x +dy + [x' Qx + % r (CTSC) + x7T St Ax + 2;3‘1 AX

+xTATS, x- x"S,BR'IBTST x} it + (2 x7S, C + 28] C) dw, =0

By grouping the terms

XT(S; + SiA + ATS, - S,BRIBTS, + Q) x dt + xT(2dB, + 2473, dt

+26,C dw,) +d3, + 2 (CTS, 0y du+ 237 € dw, =0

we see that we must have

- : PR _
S, +SA+ATS -$BRB'S + Q=0
f.'(l:}‘ + 2 AT.:it dt + 2 St(' (Elwl =0
di, + 5 (CTS,C) dt + 23] € dw, =0 (2.49)
with ternnunal conditions

S'] = l

JT =0

-‘,.l- =0 (2.50)
because

xTFx = xTSp x + 237 (w) X + dp(w)
in view of (2.48-2.50)

A x o w) = - 2;-3{(..)) B

independent of x due to df(;l'j u) = B = const. We recovered thus the results from Davis [5]. If we

multiply the equation for dB' in {2.49) by BT to the left and we assume BBT nonsingular we oblain a

P




% F‘* - R dnd = —————— ﬁ-t
!
v
| stochastic differential equation for A7 (and not a stochastic partial differential equation HJB SPDL as
! in the general nonlinear case)
: dX] = - BTAT(BB"Y !B X] dt - B'S,C dw,
—
. Ar=0
L}
The robust equation of (2.47) for W(t. 1), where W(t, x - Cw,) = V(t, x), is (see (2.12))
oW in {OW T T
, B (t, . W) + Tlencu{ an (A (n+ Cw;) + Bu) + Af(w) u+ u Ru
+ (n + ('wl)T Qi+ Cw))} =0
W(T. ) =(y + ('\\'T)T Fy + Cwy)
with solution W(t.) = (1)+("wl)TSt(r)+(‘wt) + 23,T(17+th) + 9y
Remark
. ‘The optimal countrol u™(t.x) is not bounded but many of the assumptions of our results can be
i
| ‘ weakened: U need not be compact as we nse here the fact that the expression to be minimized in HJEB
o '
PDE is quadratic in u: f can be linear in x as §(x) = x + Cw, so that %(x) = I(l and the lincar
growth in x of a(t.x.w) holds a.s. ensuring the nonexplosion of ¥ (n) in (2.7): the characteristics method
works with 8 having Lipschitz continous derivatives so in particular with 8 linear etc.
’
\
p
]
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3 : Stochastic anticipative optimal control
and almost sure (pathwise) optimal control

We consider now the anticipative stochastic control problem

dx, =T (x5 ul)dt. + 8(xy) odw,
XO = io
inf E[f(x
oo Bt
(PY)

x, € RY, g(x) = [g)(x) i+t g(x)]

f(x) = f(x) ~ ¢

1 oh—

p
) g (%) gi(x)
=1 X

(3.1}

1o which we associate a family of deterministic optimal control problems (PO“‘") e via the SDt

solution decomposition formula (1.2) Mixg) = & o mixg) which is our definition of solution of (1.1) lor

u, € A
dy(xg) _ (g1 f (&
e = (Z) nsg)IT (€ omelxg) -uy)
'I((XO) - ‘YO
O
P e

ui'éfJﬂ, [0 0 &plrpixg))]

where b is the class of ineasurable functions u:[0,T]—U.U a compact in R". The relation between

(PY) and (P"-“’)w_e o

) lé)& E[B(XT)] = E( " ielﬂ;ﬂ,(GO £T(”T(’-‘0))))




-

-

provided again that the infimum on the right is attained for each w and the function assigning to ecach
L 0. - . . .
« the minimizer of P%“ is measurable. which will be the case under our assumptions as we use a

measurable selection . This shows that we can solve (P°) by solving (P%*) for w € Q and averaging

the cost over the sample space, §2.

We make the following assumptions

(a’) fis Cg in (x,u) (i.e. with bounded mixed derivatives up to order 4) and bounded. g;
are Cg and bounded for iz:1....,p. # is Cg
(c") the nonanticipative stochastic optimal control problem

dxl = f(xt‘ul)dl + g(xl)odwI
*0= %0

inf E[6(x{'T))
weN [ ]
has a feedback solution u*(1. +) continuous in (t. x). (".% in x so that, under (a) its
value function is the cbe unique solution of

/A% ov*

_— : Q_\_ . l 62\”& T\ _
5+ u{ae e} + bl eT) = 0

VHT.x) = 6(x) .

(The smoothness assumptions on u*(t.x) can he relaxed if we impose in addition the uniform
parabolicity of gg' [8,p.129])
(¢) Consider Y(z.x) = unéi:rh{/f"‘f (x.u)) . 2x€ RY. Selection lemmas exist (see Benes

[2. Lemuma 5)) which give a measurable or even a C! minimizer ¢(z.x)=u0(z.x)

such that Y(z,x) = 27 T (x.0(2.x)).The implicit function theorem can be used to find




vy

conditions for smoother minimizers . We assume here that ¢ is Cg in (x.z).

Corresponding to each member of the f.mily of problems (3.2) we have a random HJB PDE (i.e. PDE

with random coefficients) for the value function W(t,p) := inf _[00&(T, t, n))):
u, €M
OW . fawW (9! - _ .
5+ min {51 (GY i (g, w) =0 (3.3)

W(Tm) =60 §pl(n).
Using (e) we get under our assumptions a minimizer in the form

. HE -1
W) = o GE (1) (FL) (). &)

which substituted in (3.3) yields

OW OW dE\T o AW 08\ 1 _ .
Gu e+ Gl (G it g on. fFE ) () . gm) = 0 (3.1)

W(T.n) = 0o €p(n)

Using from (1.2) 1,=£ll(x) we get the expression of the value function in terms of x. the initial value

at time t for (1.1)

Vs = we g oo

a(txw) := 00! (x)w)

and it will be shown that VO(t.x) is the unique global C?2 solution of the (backward) stochastic PDI
(Hamilton-Jacobi-Bellman stochastic PDE)
dVvOit.x) + QLO(( x)f (x o(M(t x) x))dl + M(‘ x)g(x)o dw, = 0 (3.5)
{ ' gx v Aax Tl ax V" t

VO(T.x) = 8(x)
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This solution is Vo(t.x) = ianG[x('l :t,x)] and is expressed by the stochastic characteristics method
u, €
as \’O(t.x) = vy osp;l (x) where

dyy(x) = [l (%) o (). 2y(3))) + 1\ (Ofy (2 (x).8(x (), 9(%))) 8y (Y (X). @y (x))]dt

+ gl (x))0 dwis gop(x)=x (3.6)

dyy(x) = = [ix(@g(x). S(x((x). 2 (x))) + [u(py(x), B(xy(X)s Py(X)))Sxp (XD (X)]T xy(x)dt

d )
= g (o) \(x) dwi s Xp(x) = fy(x) 3.7)
1=1

dl/' —_ Ty f s ¢ - vy . )
To 00 = () (g (x)e ol (x)ez (33104 (1 (x), wix))x(x

vp(x) = 0(x) (3.8)

N .t .
. _ of . \ - ij _ < _ R _ o T
where f, = oy s the nxm matrix of components fy = _6uj’ ¢ = o(\.v) 0y = 7, ete. ~0" is the

Stratonovich backward differential notation and (pg(x),x,(x)) are defined as in (1.8),(1.9) using the

flows of (3.6).(3.7) with general terminal condition. Making the notations

Flya) = AT (vo()

T

Glex) = v gly)

we can rewrite (3.5) as

X

0 VY (Y o dw, =
{d\ (t.x) + F(x. 3 (l..\))dl+(_'(x. M (L.x))odwt_O

(3.9)
VOrrx) = a(x)
and (3.6)-(3.8) as
dex) = Fy (2 (x)a (x)dt + Gyl (%) \((x))6 dw, (3.10)
dy(x) = = Fole(x)y (x))dt = G (p(x). vq(x))0 dw, (L

o

e




dv
T ) = = (Floy(x), \((x)) = Fy(e{x), x0)xy(x) (3.12)
(%) = xy pp(x) = 0(x). \p(x) = By(x)
(3.9) is a nonlinear SPDE which has only a local solution for t € J7(w),T],(i.e. down to a stopping time
r{w) : [10, Chapter 6]) because w(x) is only a local flow of diffeomorphisms a.s. up to a stopping time
due to the coupling with x;(x). We will impose conditions ensuring that p,(x) is a global flow of
' diffeoriorphisms a.s. by making the stochastic Hamiltonian system (3.10) - (3.11) admit a certain
invariant  Lagrangian submanifold or random conservation law 1y (x)=d(t.5{x}w) for all

(t.x) € [0.T} x RY a.s.. which will decouple (3.10) from (3.11).

Equation (3.9) has (3.4) as a robust randoin PDE (PDE family parametrized by w € (') with

characteristics solution W(t.p) = ~ o L'{l(n) where
! dENt &1
(:ILT'=(§;‘) (k'n)f<fl<t'l>-o<b.‘((.,—;) (vy): &l(u()))
T
A€ -1 o 7 O v
+(( ) (vt)) SO G o TR Et(w()))

T
d =
((;x) (H)) =F §(tuy4y)

v =) (3.13)

. ¢ i

P



o~
F = —
'
HE -1 €, T
« (52 W), - ”%(( 7 )w’ = - Fyltons)
b = ﬂx(ﬁT(n)) (n) (3.137)
dy 8¢ 0¢ = = -
T (S w0, (7 0= —(F“’(t,wv&t)— F‘g’(t.vﬁt,&t)ét) (3.137)
=90 o &r(n)
1
with
= 861 o€,
PN X ST N AT
Fuaydy =67 () (60F (6wt ( S (06 9=F(w0) Ol (4)
x=87(8,/6x) ~ 1(v)
We omit 5 from the notation here. writing (v, 6y7¢) instead of (¥ (n),6(1n).7 (1)) defined as in
(1.8)-(1.10) using the flow of (3.13).(3.13") with general terminal condition. We also omitted for
simplicity the variables of functious in the second and third equation. Considering
d"ts(n) O\ 1z e ooy of s7(OEsY T (4o -1 eyl 1Y
o= (7 T b 27 Wi ewid )+ (3 wib
x 6T fT(( ES) ) 5= F (.07 (n.6m) (3.11)
u"i%(n)= 1 t<s<T
\ we have
p
vl = vk
-
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3.1 Main results on anticipative control and on the cost of
perfect information

The first results concern the optimal control and optimal cost function for the anticipative stochastic

control problem (P°) solved by means of (Po“"))w cq with Q' as in Definition I.
Theorem 3.1  Assume (a’), (e) and
) {Fex) v = Oy ()} = 0

{GEpa). \; —(?xi(;)} =3

for {y\\) € L={{pn) € R""Il\zox(;)}. (=1....,p. i=l.....d where {-.-} is the Poisson bracket

d . . o
lefined by {h(z o)k} =S (G5 dh_ gh oh
defined by {h(yz ) ki(v\)] l; ((’)\i Oy, Oy, d\i)

Then ﬁo(t.x,w):zuo(t.fil(x)....J): arg inf E[0(x(T:t.x))] = o(f4(x).x)) (i.e. the optimal control is a
u€A

feedback control) and

p
VO(txw) = inf  O(x(T:tx)) = B(x)+F(0.6,(0)(T-1) + O GE(0.65(0))
u, €M &1

X [wi('l'...;) - wi(l...u)].\'(l.x) = irgAE[H(&(T:t.x))]z 0(x)+F(0,6,(0))(T-1) = EVo(t,x...-)
i
where Vo(t.x...;) is the unique, global ("2 solution of HIBSPDE
dvo(t X) 4+ min {M(‘ ) fix u)}dt + av? t.x)g(x)o dw, = 0
y u ax . ~ x + t

€U

vO(T.x) = 8(x) (3.15)
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Remark L is a Lagrangian submanifold as the symplectic form dei I\dgpi is null on L{Arnokl [1]).
i=1

The next theorem characterizes the ¢ptimal control and optimal cost function of (I’U) in another case
in which these can be globally defined (i.e., for t € [0,T), x € Rd). In this case the optimal control
may be anticipative and VO(t.x.w) is not separable in t and x as it is in Theorem 3.1.

Theorem 3.2  Assume (a’). (¢) and

(1) {Flea) Fle)} =0 {Fy(e). GHo)p = 0

for (p\) € R, {(=l....p: i=l...d

(s A{F\ (o) = Oxjw)} =0

for (z\) € L

Then Gy(tx.w) = ofy, o,:;l(x).x) and \'O(I.x...:) = uto«pil(x) is the unique. global. 2 solution of

{3.15) where
dp(x) = F\(O.(?x(()))dl + gly (¥ )o dw,. y1(x) = x (3.16)

and v (x). \((x) are given by (3.7). (3.8) in which p (x) is the flow of (3.16) above.

Exam B'e

It is iuteresting to see how these conditions and formulas look in the particular case of the

deterministic LQG problem

kt=Axl <+ But y XO = io
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ui'g./n;[ J(x{Q X, + uf Ru)dt + anr Fxyl

We have the HIB PDE (dynamic programming equation after minimizing)

.8_\_'+ 6—vAx -

18V gr-lpmf VY 4 xTOx =
ot t ox § eBr!BI(ZY) +x"Qx =0

oV

ox
V(T.x) = xTMx.

Condition (f) amounts to {F(p.x). \i-2(hiw)i} = 0 on the Lagrangian submanifold L. = {p.\) € del\-

2M-=0}, where F(p\) = \TAp—ql \T BR'lBT\+¢TQ¢ is the Hamiltonian. i=1,...,d and (My),

denotes the i-th component. After caleulations we get that (f) is in fact

Q+MA+A™ - MBR!B'™M =0
i.e. M must satisfy the algebraic Riccati matrix equation and thus is a stationary solution of the
Riccati matrix differential equation. We get V(t,x) = xTMx (stationary cost function). If M, solves

instead the differential Riccati matrix equation (DRE)

- M= Q+MA + AT, - MBRIBM M =M

then
V(tx) = xTM'x

because DRE for M, amounts to the condition for time dependent integrals of motion for stochastic

Hamiltonian systems [3. p. 231]

%“i =2AMy)) + {F. ;- 2AMp);} = 0on Ly = (oY) € R, = 2M, =0}
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which is the generalization of (f)( {I'i,~.\).\ —2My} is the vector with the ith component being

{F(p\ )\ — 2(My);} ). Indeed
A0\ M) + (VA2 - WTBRIBT\ + Qo 2Myp) = 0

on L, .This can be seen by first calculating the Poisson bracket and differentiating with respect Lo time

to get

—2Myp + (= 2M)(A¢ ~1BRTIBT\) — ATy -2Qp = 0.
We then substitute y=2M, 2 and factur out Zp to get

~N, = MA + AM, - M;BRIB™™, + Q. M =M.

We state now the generalizations of Theorem 3.1 obtained by imposing conditions for the existence of

time varying deterministic and randons conservation laws .

Theoremn 3.3
Assume (a%). (e) and assumne there exist J](l.,:) ..... Jd(t.,o) which are Cg in 2 and ¢lin satisfyving

Vira) € L= {(p) € R¥My - 1) = 0} Va e [0.T)

83, _
Ft-(l"’) + {F(¢.1). ;- di(t.¢)} =0 i=1.....d.
(8) {64 - B0} = 0 i=1,d: €=1,p

H(T) = 000

Then uo(t,x) = ¢o(J(t.x).x) and Vo(t.x...;) =y, oipil(x) is the unique, c? global solution of (3.5) where

dpy(x) = Fy (2 (%) S(Lp(x))dt + G (9 (x).3 (L (x)]) 6 dwy (3.17)

n

¥1(x) = x
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dv
—d-‘l(X) = = (F(py(x), Ity (x)) = F\(py(x), Bltapy(x)))BT(Loy(x))) (3.177) {
i
7p(x) = 0(x) :
and {&(p. 1), k(g,xot)) = i Ok Ot _ Ok 98} g4 each t€[0,T)
YeXat )l » X & axi 6501 asol 6Xl 14
.
Remarks
09;(ty) . . e -
1} Assume _Bi(&,¢) = T (i.e. 3, are gradients of some T for t fixed) exist satisfving (g). Then
VO(t.x.w) can be expressed as
[}
\’O(t.x,.d) = 9(t,x) + &(t.w)
1 SYET [4
dé(tw) = € ()dt + D EF(N)dw L E(Tw) =0 (3.18)
(=1
where d is the backward Ito differential notation and with {1.6% given by
Ly 9 . (. hty)
= -Fe - Kz )
2y ol O1(ty) ) .
£3(t) = (.‘(,,. o ) (3.19)
If we consider stochastic time-varying prime integrals of the stochastic characteristic system of (3.5) of
the form y (x) = A(t.p(x)w) we get an even more general form of Theorem 3.2. We denote l)§ =
k .
()kl : ﬁ_k"_ Ik =kp+ - -+ kg
()xll axn
Theorem 3.4 '
Assume (a’). (e) and assume there exist d gradient backward random fields dl(l».,:.w) .....
Jgltpw)liedntpw) st dtpw) = 87(lp.w)/dp) which are c3 in o vV Leloll] as. .
»
L 64
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(Dl,ﬁdi(t.x,w)l <r(tw) € Llloc([o‘T]) Vxe RY as. for lk| < 3 (i.e. for sonie processes r{t,w) almost sure

locally integrable on [0.1] ) and have differentials given by

p
9 N . .
ddj(t.,v.w) = ;ijl([‘y?.u)dt 4 czldj-_c(t,;;,u) ) dwf i j=1,...d (3.20)

satisfying for all (p.\)el,l(u)'—-{(;.\)Ede] \ - B(t,p.w)=0} and for all « in some Q7 with

P(Q)=1":

Jl (Lpw) + {Flpn) ) — S(tpw)} =0

32 ((topw) + {GlN) = 3(tp)) = 0 i=lo.d; (=1....p.
J(Tgw) = O(5)

Then u“(l.x..u)zo( Jlt.x.w)X)) is I-‘—'r -adapted and \'O(L.x...;) = q(t.x.w)+ E(t...;). E(T.w) = 0 with

E (t.w) given by

dE (tw) = € Ytw)dt +

E'é(t w)odw

i [V]-c

M {tpw)

R 2 TS 0 oae 4.
A + Tl + Bz 5T )_Ua.:. (3.21)

. o 1. \
1) + € Ftw) + (;‘(;. BL(()-pﬁi"—)) =0 as I=l..p

L
dy(t.pw) = -,l(l.,;..u)dt + Z -7‘0!((‘,50,‘..1) 6dwte
;=l

0 (Lpw)
Oy

\'"(l.x...') is the unigue (? glohal solution of (3.5) and it can be represented by Vo(l,x.u;) =, o¢;l(x)

2
where dl(t ,9...;). 7 (t Jw) = %(t.,a.u) a.s.
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with ut(x)“pt(x) given by (3.17°),(3.17"") where instead of ﬂ(t,cpt(x)) we substitute J(t.p(x).w) defined

above.

In his pioneering work on stochastic Hamiltonian mechanics [3], Bismut was the first to consider
deterministic conservation laws for stochastic Hamiltonian systems . We defined here a generalization

of these invariants which in the case of stochastic systems must naturally be random conservation laws.

We can now state the results concerning the “cost of perfect information™: the difference between the
g

nonanticipative optimal cost and the optimal cost when anticipative controls are allowed. In general

we have

Theorem 3.5

Assume (a’).(c¢’),(e) and assume that for all x € Rrd @y(x), the stochastic flow of (3.6), is a global flow
of diffeomorphisms for t € [0.T) almost surely (which is true under the assumptions of any of Theorems

3.1 - 3.4). Then

T
A(tx) = V¥ix) - E\'O(l.x) = JE[\so¢él(x*(s;L.x))(f(x* (s:1.x). u®(s.x* (s:t.x)))
—~f(x* (sit.x).o{yg0 ,:;l(x* (s:t.xtj).x' (5:1.x))))]ds forany t€[0.T). x € R4
(3.22)

where x*(s;t.x) is the solution of
dxg = {(xg,u*(s.xg))ds + glig)dwg . x = x  s€[t,T]

In the case when the system of stochastic characteristics (3.6) - (3.8) admits a random conservation law

J(t.X.w). which is the case of Theorem 3.4, we have in particular the following formula for the cost of

information on the future

Corollary 3.1  Under the assumptions of Theorem 3.4 and under (c') we have
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T
Atx)=V*(tx) - EVO(t,x)= I E[ﬂ(s‘x*(szt.x),w)(f(X*(S:t-,X),U*(S»X*(s;t,x)))
t
—f(x*(s:t,x).d»(a(s.x*(sn.x).u).x*(s;\.x))))]ds {3.229)

Similar corollaries hold for each of the Theorems 3.1, 3.2, 3.3 by replacing in (3.22’) 3(s.-.w) by the

0
corresponding formula for % {s.+.w). In the case when (f) or (g) hold we can show that the cost of

perfect information is zero and the optimal anticipative control is nonanticipative (feedback).

Corrolary 3.2 Assumne that either () or {g) hold . Then A(t,x)=0
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3.2 Proof of the main results

Proof of 'Theorems 3.1 - 3.4

In order to prove Theorems 3.1 - 3.1 we will follow the same method as in §2.2. We consider the

pathwise problems (PO'“’)W €n and random PDE’s (3.3) which after applying the selection lemia (see

(e)) become (3.4). Using the Verification Theorem [8, p. 87) and the characteristics method (3.13) for

W(t. »). the minimizer UO(t.J],uJ) is optimal for (Po.w) and W(t,n) is the value function. W(t.p) = 5,
L (m) (see (3.13). (3.14)) and

dw(t.n? W sw 81 o
RO _ oW 0y 4 O, 0y DI O 0, aw(“’t)(j) (n0F (€, n?)

dt T (h)‘ di T at Ox

) Z e, 00) = 0 as.

where 1/:) is 1), as given hy (1.4) for uy = uo(t.ry..f;).
To show that \\'(l,f;l(x)) = \'U(I.x) = igf.m:o(x('l'.t.x)) is the unique global solution of (3.5) we
u

consider linear interpolation approximations {:'“(l.w‘)}" eN (2.17) of w(t.w) in
n
3

T (&) iMLw)

Corresponding to this we have a sequence of random PDE's

kel Ell £
D) + B 4 o T (e o 2 5 B0y o)) = 0
WN(T.n) = 60 &f(n) (3.23)

‘Then by ordinary differential calculus \\”‘(l,(f?)’l(x)) = VO’n(t,x) satisfies

r)qun t. o.n o.n o.n
é ac( x), o\éx (‘..x).;(w(a\éx (tvx)'x))ﬁL 8\$x (tx) g(x) i = 0

6
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VORN(T x) = 8(x) (3.24)

Axin §2.2 we can prove the following convergence resuits in probability for each t uniformly .in x and 5

Vo) Bover (3.23)
w2 wi (3.26)
wiiEr ) £ wigl). (3.27)

where V¥ and W are the solutions of ,3.5) and (3.4). (3.25), for example. can be shown using the
stochastic and ordinary characteristics SDE representations to reduce (21) to show the convergence of

the solutions of characteristics SDDE's. In our notation
VO(x) = oo (M ) v = v 0! 3,28
X) = v oy X) — X) = w0 (x)- (3.28)

where for example under the assunmptions of Theorem 3.1, as we will see, we have

(Gn
T 8) = Fyef0. 610D + e 0))ifs ofx) = x (13.29)

n

ayv - ;
T(x) = Ol x ot

(—);(”::(x)“z’w.\'(*’?(x))&{'(x)))
do N n n,.. n _ N
X awx(p‘ (%)wpy (X)x (g (%)), vpix) = B(x) (3.30)

de(x) = FL (305 (g (5)Ddt+g( ¢ (x))0 dwy, pp(x) = X (3.31)

dgoid(x) = F\(;}é(x) 8. (5 00)ds + gw{é(x))odwsvw}{(X) =X
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1<s<T: pil(x) = ,:;rll‘(x) (3.32)

It follows from [3,p.39] that ,9{’(.() r ¥ (X) uniformly in probability on compacts of [0.7] xRY
vy(x) is given by integrating the same expression as in (3.30) but with p,(x) instead of .;{'(x) . We
used the forward equation (3.32) to get the inverse of the backward stochastic flow p,(x). It follows
now from \‘V“(t.(f{’)'l(x)) = VO(t.x). (3.25). (3.26), (3.27) and the uniqueness of the solution of the

stochastic PDE (3.5) that we must have
WiLg L x) = VOtx.

For all this reasoning to hold we need to ensure that both (3.5) and (3.4) have a global solution (the
former holds if p(x) is a global flow of diffeomorphisms a.s.). The following lemmas give conditions

for the existence of global solutions for nonlinear stochastic PDE’s (3.9).

Lemina 3.1
Consider the backward nonlinear SPD:. (3.9) and assume (a’), (e) and (f). Then (3.9) has a unique
global solution

VO(xw) = 0(x) +F08(M)T-1) + G0.8(0)[W(Tow) — w(t.w)]

i.e. \'U(l.x._u) is separable.

Proof (N is equivalent to \((x) = ly(p(x)) , t € [0,T] where x¢(x)wp((x) are stochastic
characteristics given by (3.10), (3.12). Indeed applying lto’s backward rule [14. p.255] we see that

(r{x) (x)) € L for all t € [0,T] implies

da(x) = Oxxlpy(xNdpy(<) = = Flop(x)y(x))de
= Gylp(x)y(x))0 dwy = Oy (py()IF | (g (X)ixy(x))dt —Byy(py(x))
x G\,(tpt(x).xt(x))é dw, = {F(g.x).x-0x(¥)} LP=¢t(X)dt

+ {Glen) vbx(v)) |¢=¢t(x) x=x,(x)
\=\'(x)

6dw(=0
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To see that () implies (,:L(x),,\l(x)) € L for all t € {0.T} we make the change of coordinates

Indeed T is a change of coordinates as

Mgy | Y
3o\

- gx,\'(f") ]d

in the new coordinates (f) is equivalent to ()

T(L)

1l
=
1}
——
{)'
-~
m
2
-
~\
I
=
=

X F(\—i )II =0

—.,l

of
fo(\i)lf =0

T i3 a) aT(T~YF.x )

where K F(a‘T) = _-_T(:v-_\_)__— xl (’l— }(a ,T ])\ Xce (6 \Y) = d(g\)
. 1 = N cl 8 _qtd.
X X (T7 @ XD and Xp=F 52 - Foar X =Gy g ~ Oy

{=1...p : i=l..d

The stochastic characteristic equations in the new coordinates become with our notations:

x| | XE p | X1,
=| @ T dt+ Y| S (B (%)X y(x)) s dwf
dx y(x) Xt =1 le

o

l,-—» —— -
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= p\ -
=X p (P (%) (x) du+ (; x(,;ﬂ(at(x)x (X)) 6dwl ; B r(x)=xX (x)=0 (3.33)

and (f ) implies
X &(p (x).0) =0, Kée(at(x),m =0: £=1,....p.

Under the assumptions (a) made on T‘gc .6 (3.33) has for all xGRd a unique solution and this is

' (F1(x) A 1(x)=0). t € [0.T): where F(x) is the unique solution of
d7 ;(x)=X HZ [(x).0)dt + )~ X éc(r,z;(-,\-).0),<del ; B 3(x)=0.
=1
As Y {(x)= (%) - (lﬂﬂ(x)):ﬂ . we obtain (;,(x).\[(.\')) €L forallt€[0,T].

The geometric interpretation of (f) is that in every point of the Lagrangian submanifold

L={(y\} € R2d|\=0x(;-)} the drift and diffusion Hamiltonian vector fields

. _ L {0
X (=G -«
are tangent to L (we use the veclorial Poisson bracket notation from the LQG Example)
' AP (2N, = Xp by (2], = 0

(GE AN = X gy = O oDl = 0 5isld

so that as the stochastic characteristic system (3.10), (3.11) (seen as a stochastic Hamiltonian system)

- v -

e w—
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starts at t=T on L (x-p(x) — Ox(pp(x}) = 0 for all x € Rd) it will remain there for all 0 <t < T a.s..
I. is thus an a.s. invariant submanifold for (3.10). (3.11). As a consequence @ (x) is the flow of (3.31)
which is an SDE with Lipschitz coefficients due to (a) so that pyx) is a (global) flow of
diffeomorphisms a.s. for t € [0,T]{12]. Thus Vu(l.x) = vy oxp'tl(x) is the global solution of (3.9). But

more can be said about VO(L‘x). As
VY (1) = x, 001 (x) = (1
ox (LX) = Xt © P X)) = Oyixi.
\»'U(t.x) is separable
VO(1x) = 0(x) + €(tw
To find &(t.w), a backward random field with the differential
i P 2000 a0
dé(tw) = £1(t)d + Y EG(t) dw, (3.31)
(=1
we substitute (3.34) in (3.9):
1 o ¢ ¢
[€1(1) + Flxb(x)ldt + Y [€ht) + GHx.04(x)))6 dw( = 0.
{=1
Due to (1) F(x.8,(x)) = F(0.8,(0)). GE(x.0,(x))) = GE(0.6,(0)) so that £(t,w)= F(0.0,(0)(T-1)
P { (] ¢
+3_GHoa0)whTw) - whrw)).
(=1

Lemma 3.2 Consider the backward nonlinear SPDE (3.9) and assume (a), (c'). (') and (). Then

(3.9) has a unique c? global solution

V(i) = vy o pil(x)
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with ;;'1()&) the inverse flow of (3.16) and vy(x) given by (3.8) in which p((x) of (3.16) is substituted.

Proof (f’) and (f’’) imply that for i=1.....d.

F(PUx(0) = Fy (x8(0)) = B (0,6(0).

le. F\(*’t(x)‘\t(x)) are d prime integrals (conservation laws) (see Arnold (1], Bismnt [3]). As a result
the first stochastic characteristic equation is an SDE (3.16) (“decoupled” from Xy (%)) and o (x) is a
global flow of diffeomorphisnis almost surely because of (a’).

Generalizations of Lemmas 3.1 and 3.2 leading to Theorems 3.3 and 3.4 are made by allowing the
conservation law to be time dependent and respectively both time dependent and random so that it is
a random field having a certain backward differential.In this way (g) and (g') imply that
\(X)=3(tp(x)) and respectively \jix} = J{t.g(x)w) (the differential of the random field being
(3.20) so0 that again #(x) is given by an SDE (“decoupled™ from xy(x)) which in the case of random
field conservation laws has random coefficients.  In this case the global diffeomorphic property of #(x)
follows from {12.84.6] . (a’) and the local integrability w.r.t. time a.s. of the derivatives in x of the
random field assumed in Theoremn 3.4.

We need a result connecting the existence of a global C? solution for (3.9) to the existence of a global
1.2

("' solution for {3.4) so that the latter is implied by the former. We will prove this when (f) is

assumed.  The cases when any of the assumptions (f')-(f"), (g) or (g') are made are treated similarly.

Proposition 3.1 Assume (a’). (e) and (f). Then (3.4) has a unique (‘1'2 global solution given by

Wiy =7, o:"l‘(r)) where ;;'(:)) is the inverse flow of

dy (n) - - a6\ —1 — o
= P& ) 830 )(32) @ (), atm) = (3.35)
and 7, is given by (3.13) with & 1=0x (v (m) and w':-d_’ ((n) substituted in the equation for 4.

d

b e
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Proof We will show that the characteristic sub-system for (3.4) made of the first and second
equations of (3.13) has a unique global solution a.s. given by (¥ (). HX(E u(m)).  First due 10 the
assumptions on f,g, 0 and ¢ we see that (3.15) has unique solution and (3.35) has unique global
solution generating a global flow of diffeomorphisms a.s. due to £ (x) being a.s. flow of 1 global
diffeomorphismis and 1o the inequality{see Qcone and Pardoux [15])
€\ — | .
sup '(%) (x)] < () ]+|x|2)éS for every 6 >0 (3.36)
t< TIUX
[
where ¢(#) are LP-bounded random variables for p > 1. (3.36) plugged in the expression of l-;" (see
(3.13)) ensures this has a.s. linear growth. Showing that (3.13) has the solution (v ().
& l:0"(? (1)) amounts to checking tha: (f) implies that ¢ t-:0,((5 () satisfies (we omit 5):
& o (D6~ -

Tl.—. F &l ) 6.‘(5;) (v )r==F ot b )

_ o€

Fop = Og(&pim) —Lon)
that is. vsing the summation convention,

F,i + 0y (CF =0 (3.37)

¢t v 8y

We first check the terminal condition

- o€ -

8 =Ox(Ep(m)mgln) = By (L g(n)) = bx(n)
This holds because ([} is equivalent to

= {x:g: -0, (o)} = L2 .
0= {x,gje(sa). g oxk(,o)}{' = éTx—k(axngl)"”
-

—
-]
o

e ———— - & s
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V. € Rd; €=1,...,p; k=l.....d which implies that for all n€ Rd. t € [0,T):

o 8
Gx(n)=9x(ft(n));9%(n) = Oy (E(n)) —;xl(n) a.s.

This can be seen by applying Ito’s rule

d(by <e,(»m( )(rm—( “) (7) B, (€Ml €y () o dwl +0x (€ (m) 52~ gﬂX(,x) ()

odwf = (5 5c) (n)g"( xgn)(ft('l)“dwt

where we have used

(acl) (n) = 3, Sjc(ft(’i))( 6) m)odwf.

As a consequence we also have

& — |
by () (6_\()5 () = by (&y(n) -

i
We differentiate with respect to m;

a6,

6\ - 1 s -1
O 7). (,z)+exk(,;)5;j(g)k[ (1) = by, 5, (Em) (o )

Remembering the definition of F(,2.\) in (3.9) we have the following relations hetween I-"l,..

. . w (-1 .
t\kwlwn' Fu'i'“'Fu'i(ft(r)'b (—(};—) («)) etc. and F‘,,k::ka(ap.\)E . with

€\~ 1
¢ (l-“"u’vé):ft(u’)' -X. (L'Wcu"'6) = 6T (%) ('*)

. 0§
Fy v’k (ax)" (v) + P\k 3_(3)%)& (%)

€.\ —
Fe=Fy, (T,i—')jk "
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(3.38)

(3.39)

(3.40)

k hi and
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which when introduced in (3.37) yield rhat proving the proposition now amounts to showing (we omit

arguments of functions):

l_::z(r‘,gc (‘Z)_E\L)“)L

=0

: 72 (s 7. e
LY E ("xc“ ‘)ax-(f)x)m‘ (w0 + bl (Ux)ik o
8 Ll y ! |

But interchanging the summation indices in (3.40) j—i, é—k and evaluating for 7}=1,-“t we gel

. aE . ¢
b= (Fwﬁg (71_\1)61 +1 \kgx(xk (()_\t)&)l» _

L6

. i d&, -
= {F(y\). \(‘0x (r)}i;l-_\'- x ((.Tx')['l(r[)

€

- L
where o= £l ) \p:=4 { (-(;%) {v )

Due to (3.39) and & | = 0, (v )

~ 06\ —-1 _ -
\(- = gx(l." t)(ﬁ) (L'l) = ‘)X(&t(tl)) = ex(‘r’:)

for all v € [0T] so that (7. \{) € L as. for all t € [0.T] and (f) implies

{F(pn). \c—(’xc(»")“(y)l-‘\")g L= v

which proves the characteristic systen, (3.13) has the unique global solution (v (). E3 L('l)‘-‘ox(‘—' M
and thus (3.4) has the unique global solution W((t, n)=v,0¥;}(n) where v }(n) = v f(n) with
v ;’|~(1;) given by the forward random equation

den) _ e = N
S = pye . o7 (¢ ;l(n))\%) (¥ 5m)).
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il =9 : 1<s< (3.11)
Interpretation of the result
The Hamiltonian geometric interpretation of this result is that the solution decomposition formula

(1.2) leads to defining a canonical point transformation (see [3, p. 339], [, p. 23Y). [16. p.x2])

¥ = ft(b')

between the random Hamiltonian systemn

{ ':'t = Fz’(l.t;l. &) : v =

: T Wiy, & . —f (c afT (4.12)
KS[ = =F U'“'L - ﬁ‘) : ("l‘—ax(\’l‘(”))ﬁ(rl)
and the stochastic Hamiltonian system
d;l = l"\(,?(,\‘)(h + (l‘\(,::.\l)é d“"l AT EX
(3.43)
dy, =

“F;;(‘r’t*\[)dt - G’:(?’p\t)bdwll \T=9x(x)

Being canonical the transformation preserves Poisson brackets

-1 g~ ]
(Fle =0 = 10 ()T s Toy) ™ e = ogig o, ,

ax

which can be shown following the computation: from the classical Hamiltonian case from Rund [17. p.
86-93] for our case. This way (3.43) having the Lagrangian invariant submanifold L implies that
(3.42) will also have L. as invariart submanifold via (f). One can proceed like this using the theory of
canonical transformations for stochastic Hamiltonian systems of Bismut (3, p.339] to develop a theory
of canonical point transformation buiween stochastic Hamiltonian systems and the robust random
Hamiltonian systems associated with them. Proving the convergence result (3.26) when (f) is assumed

means in the light of Proposition 3.1 proving that for each t € [0.T]




oo 27 o
@l mEvm
uniformly in n on compacts where

dwn _ _ IERN -1 -
I p e non. 07 (P m(Ss) T @ M), B =

This is proved in the same way as (2.15). The random characteristic system (3.13) is ~decoupled™ (
) {‘:0,‘(1_' m ) under (f) and so for each t € [0,T] by continuity
T M 2-7 ((n)uniformly in 7 on compacts thus yvielding (3.26) for each t € [0.T):
. — — - P... - =
Wit =38 o (v ) W) = 3 0w (n)
uniforinly in n on compacts.  One approaches similarly the cases when any of the assumptions (f') -

("), (g) or (g') are made in order to “decouple”™ the stochastic and the random characteristic systems

and to ensure the global existence of thie inverse of the flows of characteristics.
We turn now to the “cost of informatio.”™ issue.

Proof of Theorem 3.5 and its corollaries

Averaging (3.5) and interchanging expectation with differentiation and integration (we use again

regularity results of the type of Lemma 6.2.6 and Theorem 6.1.10 from [10] in our particular case) we

P obtain

! ; 0 s
i%}— (tx) + | d(—l (EVO)rex))iixa®(tx)) = %(EVO)(t.x)]f(x.u'(t.x)) '
Vo Oy o1 o 1 0% vy xleaTrel) =
+ E.‘(% (tx)f(x0(VI(tx).5))) + '?”(E?(Ev J(t.x)gg (x))- 0 (3.44)




EVO(T.x) = 8(x)

where we added and subtracted 0/0x(EVO)(L.x)f(x.u*(t.x)).

Subtract (3.44) from (see ¢')).

av*
o (tX)

V*(T,x) = 8(x).

We obtain the PDE for the cost of perlect informationfor A(t,x) =

9a |

vl o vy VY
R - E(—O—!- f(x.o(—(,i;—..\))>- U

A(T.x) = 0.

+ %lx* (t,x)f(x,u*(t,x)) ~ —tr( a 2 ggT(x)) =

v*ix) = EVO0ix):

aa 0-5 D f(x.u(1x)) + lr( : T(x))-{-(%(EVO)f(x,u*(t,x))

(3.13)

We obtain (3.22) by representing probabilistically the solution of (3.43) and using the stochastic

characteristics formula for \'O(t.x):

T
‘ A(t,x):Et‘xJE[\'Q(S.X)(f(x.u'(s,x)) - f(x‘¢(\' (s.x), x))] |
t

-

xx(s

Due to x*(s) being independent of \;:(s.x) (the former is past adapted while the latter is future

———————— -

-
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acdapted) we get (3.22) using the characteristics representation Vg (s.x)=xg © ;;](x) . To obtain the
0
particular formula from the Corollary .1 we use %—(L.x) = Btxw)), (LX) = o(H(txw)x).  (see

Theorem 3.4). We prove next that assumption (f) (i.e. the Lagrangian submanifold is invariant ) leads

—r




to zero cost of information. The case when (g) is assumed to hold (i.e. existence of a time varying
deterministic conservation law) is proved similarly using generalized Poisson bracket computations
(time is included as additional variable ) instead of the usual Poisson bracket. As we have seen in

Theorem 3.1 the anticipative optimal control is nonanticipative (feedback) uO(L.x)zc‘:(()x(x).x) and
EVO(Lx):()(x)+€x(0)(f(0.¢(0x(0),0)) - %gxg(O))(T —t)

so that EVI=v0=4 (x) and E min_ {VIf(x.u)}=min_ {(EVY)f(x,u)}. By averaging the backward Ito
ueU ueEU

form of (3.15) we see that F)\'_(\! satisfies the second order parabolic PDE of stochastic dynamic

programming (2.7°) being thus equal to V*(1.x) by unicity so that A(t,x)=0. The same happens when

uO(L.x)zo‘(H(L.x).x) . E\’g:\’g:d(t..\) ( see theorem 3.3 ) because again the gradient of the pathwise

value function is non random due to the existence of a deterministic conservation law . This is not the

case when a random conservation law exists (Thearem 3.4) or when (f°),(f") are assumed to hold and in

this cases A((.x) # 0 and the optitual control is auticipative.
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3.3 Example: Anticipative LQG

Consider the anticipative LQG problem (first considered in [5] using extension by continuity):

dx=(Ax+Bu, )dt+Cdw,

T
illef AE[I(xtTth+ufRut)dt+x3i«FxT] :Q.F>0 ,R>0
u

0

Using the extension of our results to the case with integral cost term we obtain the HJB SPDE of LQG
which is a quadratic nonlinear SPNE

dVO+[VOAx — (1/4)VSBR IBH (V) +x7Qxdt+V2C 6 dw, =0

VOT.x)=x"Fx

and the optimal anticipative conirol in selector form u°(l.x.u.‘)=—(1/2)R'lB’\'2.'I‘h(- characteristics

arel using the lto backward differential notation [11. p.255]):

de,=[Ap, - (1/2)BR*BT\Jdt - Cdw, : pp=x
d\t

= —2Qp, - ATy, 7= 2Fx

There exists a random conservation law \l(x)z‘.’S';‘(xH’.’;’it(w) where S, is the solution of the
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?
differential matrix Riccati equation ‘
dS - .
L_ T -lpTe -
_T_StA"'A S{+Q-S,BR"'B'S, . Sp=F

and

d3y(w)=B (tw)dt+3s(tw) odw, . Bp(w)= 0 '

.
.)(IS( " .)3 tow .)S . .)3 I'A ” 1 TBR'IBT, T =0

I T ]( W)+ {\“~ ¥ — <IN LAY X+ Qp }I(iP-X)ELl(\J)_

-9 —-95. =23, \TC =

-J-z(t»kd)""{\ _Sty "‘i(’\ ( H(‘P.\) € Lt(w)_O
9 b s

L()={(p\) € RIY \=25 5423 («) )
We can comment again that although the coefficients of the SPDE and SDE are not hounded with !
bounded derivatives the existence of an affine conservation law leading to an affine first characteristie
equation .decoupled from the second one, yiclds a global solution .It is important to point here that
such a Hamiltonian mechanics point of view already led to interesting re-derivations of the Kaliman
filter by Bensoussan,Bismiut, Mitter [3, p.356]).The value function and the optimal anticipative control
are :

\-’°(L.x)=x"Sl.\'+23l(.¢)x+', pe) LX) = ~ R'lBT(Slx+Bl(w))

d3y=- (AT~ $,BRIBT) 3 dt - S, Cdw, . Br=0

Al

dy,=B8BR !BT3dv-247Cdw, . y7=0

It is interesting to see that Riccat: matrix differential equation appears in the conservation law

e ——e
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formula. The cost of perfect information is ( see also [5] ) :
T
A(tx) = Ju( U,BRIB")dt

t

where Uy is the symmetric nonnegative definite solution of the Lyapunov equation

du :
= = (AT- $BRIBNU, + U (A-BRIBTS,) + §,CCTST : =10
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3.4 Example : a nonlinear anticipative control problem

Consider next the scalar nonlinear anticipative optimal control problem :

(cosxt+2 sinxt . )dt + 1 d
X, =l - -+ u — W
p t t
t 2 2(cosxl+2) cosxt+2
T
inf E lJUth + sinxp + 2% |
uE A [2 t T T

Using the obvious extension of our results to problems with integral costs we get the nonlinear HJB

SPDOE
0 . .0 1,2 .0 cosx+2 0 1 :a. _—
dvO +( min { Viu + % ) 4V oS 2) dr + VY ks o dw = 0
\’O(T‘x) = sinx -- 2x
which for the minimizer UU('..X../J) = - \'g(t.x...)) becomes

20 A cosx+2 0,2 2 | P T,
dvO (VOO L (O di + VY ks s dw =0

We can check that (f) holds :

cosy+2 2 .
{x == -\ A\ —cosp -2} =0

] . -
{x Cosptz ' \ T Os¥ -2}, =0

for {(r\) €L = {(p\) E R2d| \ —cosy —2 = 0} and thus the Lagrangian submanifold L is invariant

for the stochastic characteristics of this HIB SPDE

_ cosg, +2 . . ) _
dsﬂl—( 7 -—\t)d!+a§modwt ,wT—X
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=

sin sin
dy, = x, —;pﬁdt -\, — Pt 5 0 dw, ; x = cosx + 2
(cos¢(+2)"
iLeoy = cospy + 2 VL€ [0,T] as. The optimal control is feedback wix) = —cosx—2.

\'U(L,x.w) = sinx + 2x + wp - w, and EVO(t,x) = V*(t,x) , A(t,x)=0 ( zero cost of perfect

information) as sinx + 2x is also the solution of the parabolic PDE of nonanticipative optimal control

* ; Vi,
‘9(;’ + min { Viu 4 %uQ} + Vi (c——°s“‘2+ 2, —sinx 3 )+ XX =0
t ueU < 2(cosx + 2) (cosx+2)~

V*(T.x) = cosx + 2
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